
DS 320 Algorithms for Data Science Lecture #18
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Linear Programming I

Why Linear Programming rocks:

• Incredibly general: Every problem we’ve seen so far can be formulated as a linear program.

• Computational tractable

– In theory: Can be solved in polynomial time

– In practice: Fast with input sizes up into the millions!

• Contains many properties that can be turned into useful algorithmic paradigms and analysis:

– Duality:

∗ Solve an easier equivalent problem.

∗ How do we know when we’re done?

– Complementary Slackness and Strong Duality: something is optimal!

How to Think About Linear Programming

Comparison to Systems of Linear Equations

Think back to linear systems of equations. Such a system consists of m linear equations in real-
valued variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a12xn = b1

a21x1 + a22x2 + · · ·+ a22xn = b2
...

am1x1 + am2x2 + · · ·+ am2xn = bm.

The aij ’s and the bi’s are given; the goal is to check whether or not there are values for the xj ’s
such that all m constraints are satisfied. We used Gaussian elimination; “solved” meant that the
algorithm returns a feasible solution, or correctly reports that no feasible solution exists.

What about inequalities? The point of linear programming is to solve systems of linear equations
and inequalities. Moreover, when there are multiple feasible solutions, we would like to compute
the “best” one.



Ingredients of a Linear Program

There is a convenient and flexible language for specifying linear programs, and we’ll get lots of
practice using it during this lecture. Sometimes it’s easy to translate a computational problem into
this language, sometimes it takes some tricks (we’ll see examples of both).

To specify a linear program, you need to declare what’s allowed and what you want.

Ingredients of a Linear Program

a. Decision variables x1, . . . , xn ∈ R.

b. Linear constraints, each of the form

n∑
j=1

ajxj (∗) bi,

where (∗) could be ≤,≥, or =.

c. A linear objective function of the form

max

n∑
j=1

cjxj

or

min

n∑
j=1

cjxj .

Comments:

• The aij ’s, bi’s, and cj ’s are constants, part of the input, hard-wired into the linear program
(like 5, −1, 10, etc.).

• The xj ’s are free, and it is the job of a linear programming algorithm to figure out the best
values for them.

• When specifying constraints, there is no need to make use of both “≤” and “≥”inequalities—
one can be transformed into the other just by multiplying all the coefficients by −1 (the aij ’s
and bi’s are allowed to be positive or negative).

• Equality constraints are superfluous, in that the constraint that a quantity equals bi is equiv-
alent to the pair of inequality constraints stating that the quantity is both at least bi and at
most bi.

• There is also no difference between the “min” and “max” cases for the objective function—one
is easily converted into the other just by multiplying all the cj ’s by −1 (the cj ’s are allowed
to be positive or negative).



What’s not allowed in a linear program? Terms like x2j , xjxk, log(1 + xj), etc. So whenever a
decision variable appears in an expression, it is alone, possibly multiplied by a constant (and then
summed with other such terms). While these linearity requirements may seem restrictive, we’ll see
that many real-world problems can be formulated as or well approximated by linear programs.

A Simple Example

Figure 1: A toy example of a linear program.

To make linear programs more concrete and develop your geometric intuition about them, let’s
look at a toy example. (Many “real” examples of linear programs are coming shortly.) Suppose
there are two decision variables x1 and x2—so we can visualize solutions as points (x1, x2) in the
plane. See Figure 1. Let’s consider the (linear) objective function of maximizing the sum of the
decision variables:

maxx1 + x2.

We’ll look at four (linear) constraints:

x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.

The first two inequalities restrict feasible solutions to the non-negative quadrant of the plane.
The second two inequalities further restrict feasible solutions to lie in the shaded region depicted in
Figure . Geometrically, the objective function asks for the feasible point furthest in the direction
of the coefficient vector (1, 1)—the “most northeastern” feasible point. Eyeballing the feasible
region, this point is (13 ,

1
3), for an optimal objective function value of 2

3 . This is the “last point of
intersection” between a level set of the objective function and the feasible region (as one sweeps
from southwest to northeast).



Geometric Intuition

While it’s always dangerous to extrapolate from two or three dimensions to an arbitrary number,
the geometric intuition above remains valid for general linear programs, with an arbitrary number
of dimensions (i.e., decision variables) and constraints. Even though we can’t draw pictures when
there are many dimensions, the relevant algebra carries over without any difficulties. Specifically:

a. A linear constraint in n dimensions corresponds to a halfspace in Rn. Thus a feasible region
is an intersection of halfspaces, the higher-dimensional analog of a polygon.1

b. When there is a unique optimal solution, it is a vertex (i.e., “corner”) of the feasible region.

A few edge cases:

a. There might be no feasible solutions at all. For example, if we add the constraint x1 +x2 ≥ 1
to our toy example, then there are no longer any feasible solutions. Linear programming
algorithms correctly detect when this case occurs.

b. The optimal objective function value is unbounded (+∞ for a maximization problem, −∞ for
a minimization problem). Note a necessary but not sufficient condition for this case is that
the feasible region is unbounded. For example, if we dropped the constraints 2x1 + x2 ≤ 1
and x1 + 2x2 ≤ 1 from our toy example, then it would have unbounded objective function
value. Again, linear programming algorithms correctly detect when this case occurs.

c. The optimal solution need not be unique, as a “side” of the feasible region might be parallel
to the levels sets of the objective function. Whenever the feasible region is bounded, however,
there always exists an optimal solution that is a vertex of the feasible region.2

Examples

Example 1: Grain Nutrients

Suppose BU has hired you to optimize nutrition for campus dining. There are two possible grains
they can offer, grain 1 and grain 2, and each contains the macronutrients found in the table below,
plus cost per kg for each of the grains.

Macros Starch Proteins Vitamins Cost ($/kg)

Grain 1 5 4 2 0.6

Grain 2 7 2 1 0.35

The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3 respectively.
Determine how much of each grain to buy such that BU spends as little but meets its nutrition
requirements.

1A finite intersection of halfspaces is also called a “polyhedron;” in the common special case where the feasible
region is bounded, it is called a “polytope.”

2There are some annoying edge cases for unbounded feasible regions, for example the linear program max(x1 +x2)
subject to x1 + x2 = 1.



Decision variables: amount of grain 1 (y1) and grain 2 (y2).

Objective: Minimize cost.
min 0.6y1 + 0.35y2

Constraints:

5y1 + 7y2 ≥ 8 (starch)

4y1 + 2y2 ≥ 15 (proteins)

2y1 + 1y2 ≥ 3 (vitamins)

y1, y2 ≥ 0 (non-negativity)

Example 2: Transportation

You’re working for a company that’s producing widgets among two different factories and selling
them from three different centers. Each month, widgets need to be transported from the factories
to the centers. Below are the transportation costs from each factory to each center, along with the
monthly supply and demand for each factory and center respectively. Determine how to route the
widgets in a way that minimizes transportation costs.

Transit Cost Center 1 Center 2 Center 3

Factory 1 5 5 3

Factory 2 6 4 1

• The supply per factory is 6 and 9 respectively.

• The demand per center is 8, 5, and 2 respectively.

Decision variables: xij is the number of widgets transported from factory i to center j.

Objective: Minimize cost.

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

Constraints:

x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)



Converting to Normal Form

The “Normal Form” of a Linear Program looks like:

max cTx

subject to Ax ≤ b

Our Transportation problem had the LP:

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

subject to x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)

How can we convert it to normal form—a maximization problem with all less-than-or-equal-to con-
straints?

First observe that x11 + x12 + x13 = 6 is equivalent to having both inequalities

x11 + x12 + x13 ≤ 6 and x11 + x12 + x13 ≥ 6.

But, we need both to be ≤ inequalities! We transform them to

x11 + x12 + x13 ≤ 6 and − x11 − x12 − x13 ≤ −6.

The resulting LP in normal form is:

max −5x11 − 5x12 − 3x13 − 6x21 − 4x22 − 1x23

subject to x11 + x12 + x13 ≤ 6 (Factor 1 supply)

−x11 − x12 − x13 ≤ −6 (Factor 1 supply)

x21 + x22 + x23 ≤ 9 (Factor 2 supply)

−x21 − x22 − x23 ≤ −9 (Factor 2 supply)

x11 + x21 ≤ 8 (Center 1 demand)

−x11 − x21 ≤ −8 (Center 1 demand)

x12 + x22 ≤ 5 (Center 2 demand)

−x12 − x22 ≤ −5 (Center 2 demand)

x13 + x23 ≤ 2 (Center 3 demand)

−x13 − x23 ≤ −2 (Center 3 demand)

xij ≥ 0 (non-negativity)



Writing Problems We Know as Linear Programs

Independent Set

Given a graph G = (V,E), each vertex i has weight wi, find a maximum weighted independent set.
S is an independent set if it does not contain both i and j for (i, j) ∈ E.

a. Decision variables: What are we try to solve for? A set of vertices S that is independent set:
our variables are xi for each vertex i, where we want xi = 1 if i is in our independent set.

xi =

{
1 i ∈ S

0 o.w.

b. Constraints: We cannot put vertices both i and j into the independent set if they share and
edge, so

xi + xj ≤ 1 ∀ (i, j) ∈ E.

and we can take at most one of each vertex and no negative quantities, so

xi ∈ [0, 1] ∀ i ∈ V.

c. Objective function: We want to maximize the size of our independent set:

max
∑
i∈V

wixi.

Note that this is a linear function.

We can put this all together, but that would give us an integer program, not a linear program.
Asking that xi ∈ {0, 1} for all i is not a linear constraint. Solving this would precisely solve
independent set, which we know to be NP-Hard. Instead, we relax this constraint to a fractional
constraint so that it’s linear, and just ask instead that xi ∈ [0, 1]. This larger feasible region will
still include all of the integer points, but will also include new fractional points, which can only
have a better objective function. We call this the linear programming relaxation.

max
∑
i∈V

wixi

s.t. xi + xj ≤ 1 (i, j) ∈ E

xi ∈ [0, 1] i ∈ V.


