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The Minimax Theorem

Notation:

• m×n payoff matrix A—aij is the row player’s payoff for outcome (i, j) when row player plays
strategy i and column player plays strategy j

• mixed row strategy x (a distribution over rows)

• mixed column strategy y (a distribution over columns)

Expected payoff of the row player:

m∑
i=1

n∑
j=1

Pr[outcome (i, j)] aij =

m∑
i=1

n∑
j=1

Pr[row i chosen]︸ ︷︷ ︸
=xi

Pr[column j chosen]︸ ︷︷ ︸
=yj

aij

= xTAy

The minimax theorem is the amazing statement that turn order doesn’t matter.

Theorem 1 (Minimax Theorem). For every two-player zero-sum game A,

max
x

(
min
y

xTAy

)
= min

y

(
max
x

xTAy
)
. (1)

On the left, the row player goes first, choosing a strategy to maximize their payoff and protect
against the fact that the column player goes second and adapts to their strategy. The right is the
opposite situation. The value of the game (value that both sides will equal) is 0 in this case: the
first player will play randomly and the second will respond arbitrarily.

From LP Duality to Minimax

This is not the original or only argument, but we will now derive Theorem ?? from LP duality
arguments. The first step is to formalize the problem of computing the best strategy for the player
forced to go first.

Two issues: (1) the nested min/max, and (2) the quadratic (nonlinear) character of xTAy in
the decision variables x, y.

Observation 2. The second player never needs to randomize. If the row player goes first and
chooses any distribution x, the column player can then simply compute the expected payoff (with
respect to x) of each column and choose the best.



In math, we have argued that

max
x

(
min
y

xTAy

)
= max

x

(
n

min
j=1

xTAej

)
(2)

= max
x

(
n

min
j=1

m∑
i=1

aijxi

)
(3)

where ej is the jth standard basis vector, corresponding to the column player deterministically
choosing column j.

We’ve solved one of our problems by getting rid of y. But there is still the nested max/min.

Specifically, we introduce a decision variable v, intended to be equal to (2), and

max v

subject to

v −
m∑
i=1

aijxi ≤ 0 for all j = 1, . . . , n

m∑
i=1

xi = 1

x1, . . . , xm ≥ 0 and v ∈ R.

Note that this is a linear program. Rewriting the constraints in the form

v ≤
m∑
i=1

aijxi for all j = 1, . . . , n

makes it clear that they force v to be at most minn
j=1

∑m
i=1 aijxi.

If (v∗,x∗) is an optimal solution, then v∗ = minn
j=1

∑m
i=1 aijxi. By feasibility, v∗ cannot be larger

than minn
j=1

∑m
i=1 aijx

∗
i . If it were strictly less, then we can increase v∗ slightly without destroying

feasibility, yielding a better feasible solution (contradicting optimality).

Since the linear program explicitly maximizes v over all distributions x, its optimal objective
function value is

v∗ = max
x

(
n

min
j=1

xTAej

)
= max

x

(
min
y

xTAy

)
(4)

Now, we do the same thing for the column player, where the column player moves first:

minw



subject to

w −
n∑

j=1

aijyj ≥ 0 for all i = 1, . . . ,m

n∑
j=1

yj = 1

y1, . . . , yn ≥ 0 and w ∈ R.

At an optimal solution (w∗,y∗), y∗ is the optimal strategy for the column player (when going first,
assuming optimal play by the row player) and

w∗ = min
y

(
m

max
i=1

eTi Ay

)
= min

y

(
max
x

xTAy
)

(5)

These two linear programs are duals! For example, the one unrestricted variable (v or w) corre-
sponds to the one equality constraint in the other linear program (

∑n
j=1 yj = 1 or

∑m
i=1 xi = 1,

respectively). The n x variables correspond to the remaining dual constraints, and the m y vari-
ables correspond to the remaining primal constraints. Then strong duality implies that v∗ = w∗;
in light of (4) and (5), the minimax theorem follows directly.

Online Learning

Think back to when we learned about caching or job scheduling. We always assumed that we knew
everything that was coming in advance and could make decisions about the future. What if we
couldn’t see the future? This is called an online setting, not like the internet, but as if the input
is waiting on line.

An Online Problem

1. The input arrives “one piece at a time.”

2. An algorithm makes an irrevocable decision each time it receives a new piece of the input.

Now, for an Online Decision-Making Problem, we should consider the event when you have a bunch
of experts advising you on the stocks or the weather, and you have to choose one to trust each day.
Or, equivalently, a bunch of actions you could take. Each day (or time step), you get to see how
right or wrong the experts are—they are assigned some loss (or loss) by an adversary. Your goal
is to come up with a strategy of how to choose experts as time goes on such that, after you choose
your strategy for each successive time step, the adversary assigns losses, and you get the best losses
(or minimal losses) possible. The adversary knows your (possibly randomized) strategy, but does
not see the result of the randomness until after assignment losses.



Online Decision-Making

At each time step t = 1, 2, . . . , T :

a decision-maker picks a probability distribution pt over her experts or actions i =
1, . . . , N

an adversary picks a loss vector `t : A→ [0, 1]

an action it is chosen according to the distribution pt, and the decision-maker receives
loss `ti

the decision-maker learns `t, the entire loss vector

The input arrives “one piece at a time.”

What should we compare to?

Thus far, we’ve been trying to achieve optimal solutions, or comparing to optimal solutions assuming
we know full information about the future and what is optimal. Does that still make sense?

Example 1 (Comparing to the Best Action Sequence). Suppose your set of experts (or actions) is
A = {1, 2}. Each day t, the adversary chooses the loss vector `t as follows: if the algorithm chooses
a distribution pt for which the probability on action 1 is at least 1

2 , then `t is set to the vector
(1, 1). Otherwise, the adversary sets `t equal to (1,−1).

This adversary forces the expected loss of the algorithm to be at least T/2 nonpositive, while
ensuring that the loss of the best action sequence in hindsight is 0. Thus, the algorithm’s approxi-
mation is 0/T

2 —no approximation at all.

Example ?? tells us that we should not be trying to compare to the Best Action Sequence—this
is too strong of a goal. Instead, we compare it to the loss incurred by the best fixed action in
hindsight. In words, we change our benchmark from

T∑
i=1

N
min
i=1

`ti to
N

min
i=1

T∑
i=1

`ti.

Definition 1 (Regret). Fix loss1 vectors `1, . . . , `T . The regret of the action sequence a1, . . . , aT is

T∑
t=1

`t(at)︸ ︷︷ ︸
our algorithm

−
N

min
i=1

T∑
t=1

`ti︸ ︷︷ ︸
best fixed action

. (6)

1Note that for the rewards setting, the definition of regret would instead be maxN
i=1

∑T
t=1 r

t
i −

∑T
t=1 r

t(at), still
minimizing the difference between the algorithm and the best fixed action, but now the maximum reward for the
best fixed action will be larger than the algorithm instead of the minimum loss being smaller.


