DS 320 Algorithms for Data Science Spring 2025

Greedy II: Interval Scheduling

Suppose you are given n jobs to schedule on a machine. Each job i (where $i \in \{1, ..., n\}$) has a start time s(i) and a finish time f(i). You would like to schedule as many jobs as possible given that the machine can only process one job at a time, and the jobs must run from their start time to finish time uninterrupted to be processed. That is, the machine cannot process two jobs that overlap.

What *greedy* algorithm should you use to schedule the jobs? By what metric is it greedy? (See **Step 2**.)

Prove that your algorithm is optimal by a Greedy-Stays-Ahead proof.

Step 1: Define your solutions. Describe the form your greedy solution takes, and what form some other solution takes (possibly the optimal solution). For example, let A be the solution constructed by the greedy algorithm, and let O be a (possibly optimal) solution.

Step 2: Find a measure. Find a measure by which greedy stays ahead of the other solution you chose to compare with. Let a_1, \ldots, a_k be the first k measures of the greedy algorithm, and let o_1, \ldots, o_m be the first m measures of the other solution (m = k sometimes).

- **Step 3: Prove greedy stays ahead.** Show that the partial solutions constructed by greedy are always just as good as the initial segments of your other solution, based on the measure you selected.
 - For all indices $r \leq \min(k, m)$, prove (often by induction) that $a_r \geq o_r$ or that $a_r \leq o_r$, whichever the case may be. Don't forget to use your algorithm to help you argue the inductive step.

Step 4: Prove optimality. Prove that since greedy stays ahead of the other solution with respect to the measure you selected, then it is optimal.

Step 5: Analyze runtime.