
DS 320 Algorithms for Data Science Lecture #9
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Greedy Exchange II: Scheduling to Minimize Lateness

In the problem of scheduling to minimize lateness, we have n scheduling requests. Request i has a
deadline di and requires time ti to process the job. We’ll assign start time si and finish time fi to
job i. Let lateness `i := fi − di. The goal is to minimize the maximum lateness L = maxi `i.

Ideas for Greedy Metrics:

• increasing length

counterexample: (t1 = 1, d1 = 100), (t2 = 10, d2 = 10)

Figure 1: Counterexample depictions.

• slack time di − ti
counterexample: (t1 = 1, d1 = 2), (t2 = 10, d2 = 10)

• earliest deadline

Our algorithm “earliest deadline” will order the tasks from earliest to latest deadline and complete
the tasks in this order.

Lemma 1. There is an optimal schedule with no idle time.



Algorithm 1 EarliestDeadline(d, t)

Renumber the jobs such that d1 ≤ d2 ≤ · · · ≤ dn
Initialize schedule end time f̂ = 0
for job j from 1 to n do

Set i’s start time si = f̂ and finish time fi = f̂ + ti
Update f̂ = f̂ + ti

end for
return arrays s, f

Proof of correctness. By Greedy Exchange.

Step 1: Label your algorithm’s solution (A = {a1, a2, · · · , an}) and a general solution
(O = {o1, o2, · · · , on}).
Label the jobs by nondecreasing (weakly increasing) deadline. This is the order in our algorithm.
Let π(i) be the position of job i in some arbitrary ordering. (π(i) = 3 means the job is 3rd.)

Step 2: Compare greedy with the other solution. Assume they’re not the same and
isolate some difference.
Assume there is an inversion in the arbitrary solution somewhere. That is, there exists some i, j
such that i < j but π(i) > π(j).

Step 3: Exchange. Swap the elements in O without making the solution worse. Argue
that swapping a finite number of times will result in A.
Within the other solution, at some point between the π(j)th job and π(i)th job, there must be
adjacent jobs in π, i′ and j′ such that such that π(j) ≤ · · · ≤ π(j′) < π(i′) ≤ · · · ≤ π(i), but i′ < j′.
Exchange these.

The lateness of i′ only decreases. The lateness of j′ may increase, but it must be less than i′’s
was before the swap. Thus the swap can only improve the solution. Continue until there are no
inversions.

Hence, greedy is just as good as any optimal or arbitrary solution.
Then it is optimal to order by deadline with no idle time.

Runtime: O(n log n)—just sorting.


