

Covered in introduction slides:

- Course policies (also in syllabus).
- Course learning objectives and what to expect in this class (also in FAQ).
- Sample of content we'll cover.

Announcement:

- Homework 0 on Gradescope due Thursday 11:59pm. Answer all the questions and get 100% toward participation. Will help you identify any gaps in necessary knowledge that you might need to study up on.

Runtime Review

In runtime analysis we do an informal accounting. We count basic operations (algebra, array assignment, etc) as constant time.¹

Analyze the runtime of the following algorithm:

Algorithm 1 `FindMinIndex($B[t + 1, n]$)`.

```
Let MinIndex =  $t + 1$ .  
for  $i = t + 1$  to  $n$  do  
  if  $B[i] < B[\text{MinIndex}]$  then  
    MinIndex =  $i$ .  
  end if  
end for  
return MinIndex.
```

Which lines of this pseudocode are constant-time?

Are there any loops? How many times do they run?

How do we combine these together to get the running time of the algorithm?

Which factors dominate asymptotically?

¹This isn't quite right—for example, multiplication of large numbers should scale with the bit complexity—but is a good approximation for us.

Asymptotic Notation

Definition 1 (Upper bound $O(\cdot)$). For a pair of functions $f, g : \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in O(g(n))$ if there exist (\exists) constants $c_1 \geq 1, c_2 > 0$ such that for all (s.t. \forall) $n \geq c_1$,

$$f(n) \leq c_2 g(n).$$

We'll often write $f(n) = O(g(n))$ because we are sloppy.

Translation: For large n (at least some c_1), the function $g(n)$ dominates $f(n)$ up to a constant factor.

Definition 2 (Lower bound $\Omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \Omega(g(n))$ if there exist constants $c_1 \geq 1, c_2 > 0$ such that for all $n \geq c_1$,

$$f(n) \geq c_2 g(n).$$

Definition 3 (Tight bound $\Theta(\cdot)$). For a pair of functions $f, g : \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \Theta(g(n))$ if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

Exercise: True or False?

$f(n)$	$g(n)$	$O(g(n))$	$\Omega(g(n))$	$\Theta(g(n))$
$10^6 n^3 + 2n^2 - n + 10$	n^3			
$\sqrt{n} + \log n$	\sqrt{n}			
$n(\log n + \sqrt{n})$	\sqrt{n}			
n	n^2			

There are also strict bounds.

Definition 4 (Strict upper bound $o(\cdot)$). For a pair of functions $f, g : \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in o(g(n))$ if for *any* constant $c_2 > 0$, there exists a constant $c_1 \geq 1$ such that for all $n \geq c_1$,

$$f(n) < c_2 g(n).$$

Definition 5 (Strict lower bound $\omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \omega(g(n))$ if for *any* constant $c_2 > 0$, there exists a constant $c_1 \geq 1$ such that for all $n \geq c_1$,

$$f(n) > c_2 g(n).$$

Asymptotic Properties

- Multiplication by a constant:

If $f(n) = O(g(n))$ then for any $c > 0$, $c \cdot f(n) =$

- Transitivity:

If $f(n) = O(h(n))$ and $h(n) = O(g(n))$ then $f(n) =$

- Symmetry:

If $f(n) = O(g(n))$ then $g(n) =$

If $f(n) = \Theta(g(n))$ then $g(n) =$

- Dominant Terms:

If $f(n) = O(g(n))$ and $d(n) = O(e(n))$ then $f(n) + d(n) = O(\max\{g(n), e(n)\})$. It's fine to write this as $O(g(n) + e(n))$.

Common Functions

- Polynomials: $a_0 + a_1 n + \cdots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time: Running time is $O(n^d)$ for some constant d independent of the input size n .
- Logarithms: $\log_a n = \Theta(\log_b n)$ for all constants $a, b > 0$. This means we can avoid specifying the base of the logarithm.

For every $x > 0$, $\log n = o(n^x)$. Hence log grows slower than every polynomial.

- Exponentials: For all $r > 1$ and all $d > 0$, $n^d = o(r^n)$. Every polynomial grows slower than every exponential
- Factorial: By Sterling's formula, factorials grow faster than every exponential:

$$n! = (\sqrt{2\pi n}) \left(\frac{n}{e}\right)^n (1 + o(1)) = 2^{\Theta(n \log n)}.$$