
DS 320 Algorithms for Data Science Lecture #1 Worksheet
Spring 2026 Prof. Kira Goldner and Jeffrey Considine

Covered in introduction slides:

• Course policies (also in syllabus).

• Course learning objectives and what to expect in this class (also in FAQ).

• Sample of content we’ll cover.

Announcement:

• Homework 0 on Gradescope due Thursday 11:59pm. Answer all the questions and get 100%
toward participation. Will help you identify any gaps in necessary knowledge that you might
need to study up on.

Runtime Review

In runtime analysis we do an informal accounting. We count basic operations (algebra, array as-
signment, etc) as constant time.1

Analyze the runtime of the following algorithm:

Algorithm 1 FindMinIndex(B[t+ 1, n]).

Let MinIndex = t+ 1.
for i = t+ 1 to n do

if B[i] < B[MinIndex] then
MinIndex = i.

end if
end for
return MinIndex.

Which lines of this pseudocode are constant-time?

Are there any loops? How many times do they run?

How do we combine these together to get the running time of the algorithm?

Which factors dominate asymptotically?

1This isn’t quite right—for example, multiplication of large numbers should scale with the bit complexity—but is
a good approximation for us.



Asymptotic Notation

Definition 1 (Upper bound O(·)). For a pair of functions f, g : N → R, we write f ∈ O(g(n)) if
there exist (∃) constants c1 ≥ 1, c2 > 0 such that for all (s.t. ∀) n ≥ c1,

f(n) ≤ c2g(n).

We’ll often write f(n) = O(g(n)) because we are sloppy.

Translation: For large n (at least some c1), the function g(n) dominates f(n) up to a constant
factor.

Definition 2 (Lower bound Ω(·)). For a pair of functions f, g : N → R, we write f ∈ Ω(g(n)) if
there exist constants c1 ≥ 1, c2 > 0 such that for all n ≥ c1,

f(n) ≥ c2g(n).

Definition 3 (Tight bound Θ(·)). For a pair of functions f, g : N → R, we write f ∈ Θ(g(n)) if
f ∈ O(g(n)) and f ∈ Ω(g(n)).

Exercise: True or False?

f(n) g(n) O(g(n)) Ω(g(n)) Θ(g(n))

106n3 + 2n2 − n+ 10 n3

√
n+ log n

√
n

n(log n+
√
n)

√
n

n n2

There are also strict bounds.

Definition 4 (Strict upper bound o(·)). For a pair of functions f, g : N→ R, we write f ∈ o(g(n))
if for any constant c2 > 0, there exists a constant c1 ≥ 1 such that for all n ≥ c1,

f(n) < c2g(n).



Definition 5 (Strict lower bound ω(·)). For a pair of functions f, g : N→ R, we write f ∈ ω(g(n))
if for any constant c2 > 0, there exists a constant c1 ≥ 1 such that for all n ≥ c1,

f(n) > c2g(n).

Asymptotic Properties

• Multiplication by a constant:

If f(n) = O(g(n)) then for any c > 0, c · f(n) =

• Transitivity:

If f(n) = O(h(n)) and h(n) = O(g(n)) then f(n) =

• Symmetry:

If f(n) = O(g(n)) then g(n) =

If f(n) = Θ(g(n)) then g(n) =

• Dominant Terms:

If f(n) = O(g(n)) and d(n) = O(e(n)) then f(n) + d(n) = O(max{g(n), e(n)}). It’s fine to
write this as O(g(n) + e(n)).

Common Functions

• Polynomials: a0 + a1n+ · · ·+ adn
d is Θ(nd) if ad > 0.

• Polynomial time: Running time is O(nd) for some constant d independent of the input size
n.

• Logarithms: loga n = Θ(logb n) for all constants a, b > 0. This means we can avoid specifying
the base of the logarithm.

For every x > 0, log n = o(nx). Hence log grows slower than every polynomial.

• Exponentials: For all r > 1 and all d > 0, nd = o(rn). Every polynomial grows slower than
every exponential

• Factorial: By Sterling’s formula, factorials grow faster than every exponential:

n! = (
√

2πn)
(n
e

)n
(1 + o(1)) = 2Θ(n logn).


