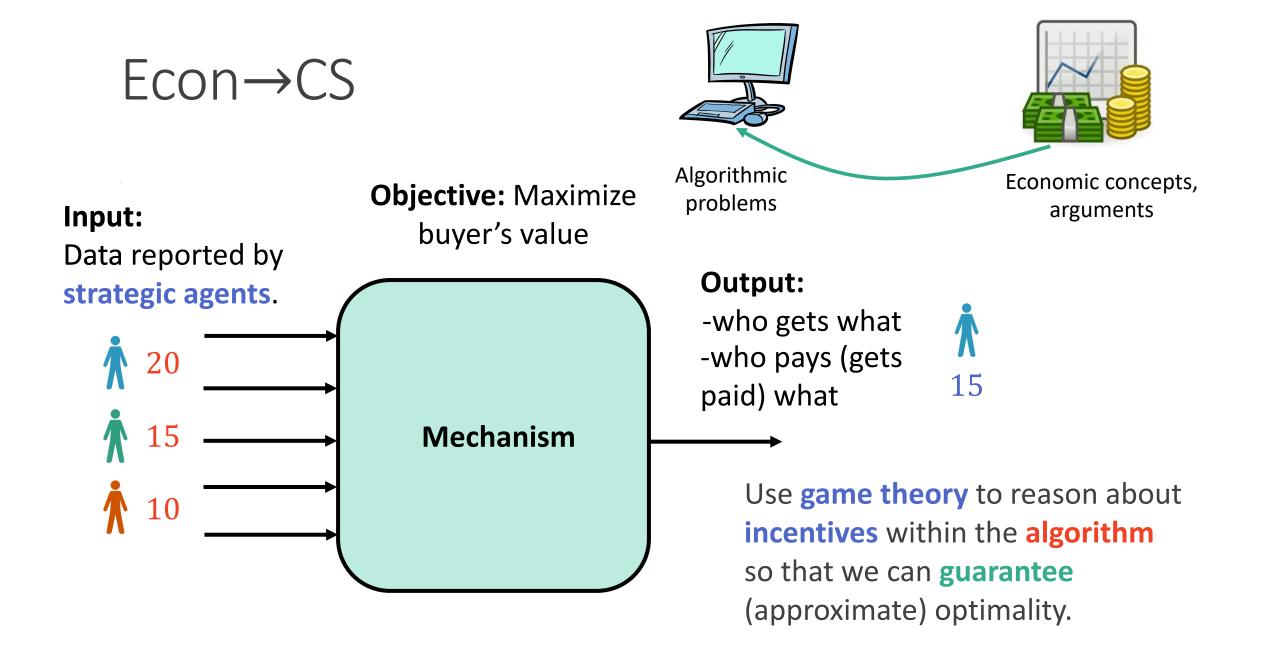
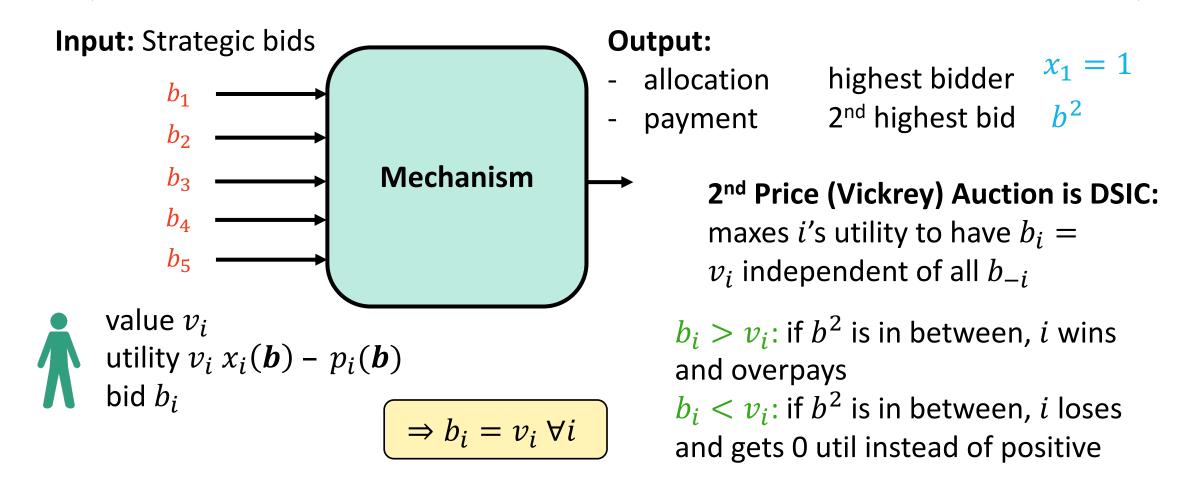
Recap/Big Picture

DS 574 LECTURE 10



Maximize Social Welfare: 2nd Price

Objective: Maximize value of the allocation

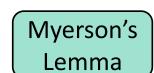


Dominant Strategy Incentive Compatibility

More utility for bidding actual value:

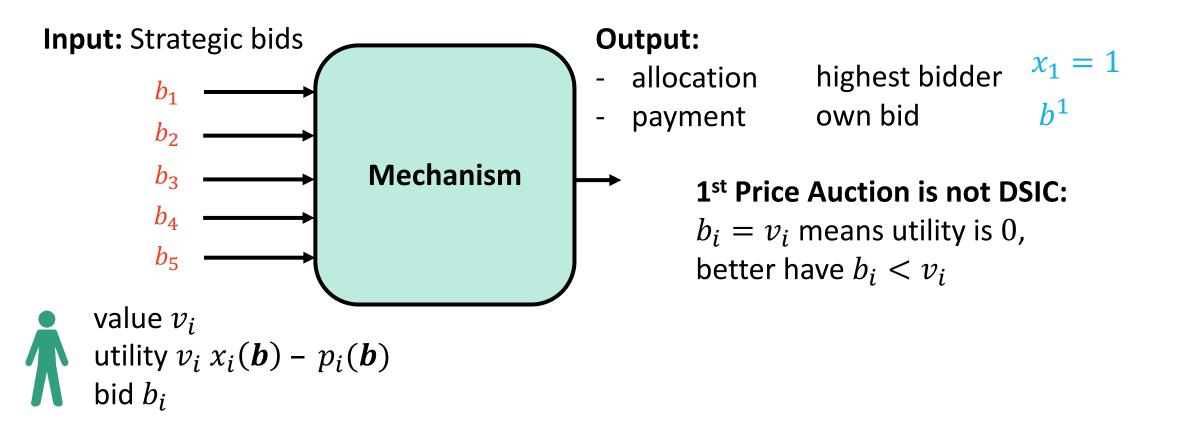
$$\underbrace{v_i x_i(v_i, b_{-i})}_{i} - \left[p_i(v_i, b_{-i})\right] \ge v_i x_i(b_i, b_{-i}) - p_i(b_i, b_{-i}) \quad \forall i, v_i, b_i, b_{-i}$$

The allocation rule must be monotone, or this can't hold. implementable
 DSIC payments are completely determined by the allocation rule:



Maximize Social Welfare: 1st Price

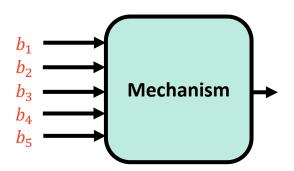
Objective: Maximize value of the allocation



The Bayesian Setting: Stages

Each bidder *i*'s value v_i is drawn from a distribution with CDF F_i and pdf f_i

- F_1, \ldots, F_n are common knowledge to all bidders and the auctioneer
- $F_i(x) = \Pr[v_i \le x]$
- $f_i(x) = \frac{d}{dx}F_i(x)$



ex ante: no values are known. mechanism announced.

interim: *i* knows v_i , Bayesian updates given this bidders submit bids

ex post: outcome announced. know v_1, \ldots, v_n

value v_i utility $v_i x_i(b) - p_i(b)$ needed: bid b_i • for bid

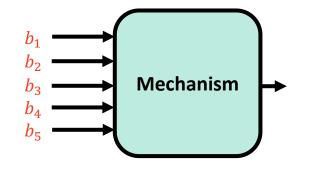
- for bidders to reason about other bidders' behavior (BNE)
- for auctioneer to reason about objective in expectation

The Bayesian Setting: Incentive Compatibility

Each bidder *i*'s value v_i is drawn from a known distribution F_i

BIC:

$$\mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \ \boldsymbol{x}_{i}(\boldsymbol{v}_{i}, \boldsymbol{v}_{-i}) - \boldsymbol{p}_{i}(\boldsymbol{v}_{i}, \boldsymbol{v}_{-i})] \geq \\ \mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \ \boldsymbol{x}_{i}(\boldsymbol{b}_{i}, \boldsymbol{v}_{-i}) - \boldsymbol{p}_{i}(\boldsymbol{b}_{i}, \boldsymbol{v}_{-i}))] \quad \forall i, \boldsymbol{v}_{i}, \boldsymbol{b}_{i}$$
 NOT $\forall \boldsymbol{b}_{-i}$ but in $\mathbb{E}_{\boldsymbol{v}_{-i}}$



 $v_i \widehat{x}_i(v_i) - \widehat{p}_i(v_i) \ge v_i \widehat{x}_i(b_i) - \widehat{p}_i(b_i) \quad \forall i, v_i, b_i$

interim: i knows v_i , Bayesian updates given this bidders submit bids

$$\widehat{x}_i(\mathbf{b}_i) = \mathbb{E}_{\mathbf{v}_{-i}}[x_i(\mathbf{b}_i, \mathbf{v}_{-i})] \qquad \widehat{p}_i(\mathbf{b}_i) = \mathbb{E}_{\mathbf{v}_{-i}}[p_i(\mathbf{b}_i, \mathbf{v}_{-i})]$$

value v_i utility $v_i x_i(\boldsymbol{b}) - p_i(\boldsymbol{b})$ bid b_i

ex post: outcome announced. know $v_1, ..., v_n$ $x_i(b_i, b_{-i})$ $p_i(b_i, b_{-i})$

DSIC: $v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(b_i, b_{-i}) - p_i(b_i, b_{-i}) \quad \forall i, v_i, b_i, b_{-i}$

Nash Equilibrium vs. Incentive-Compatibility

A mechanism is [concept] Incentive-Compatible if in the mechanism, truthful reporting is a [concept] Nash Equilibrium. (i.e. [concept] \in Dominant Strategy, Bayes-Nash, Ex Post*)

*sincere bidding may be required instead of truthful

BNE: Best-response strategies σ form a Bayes-Nash Equilibrium (BNE) in (x, p) when

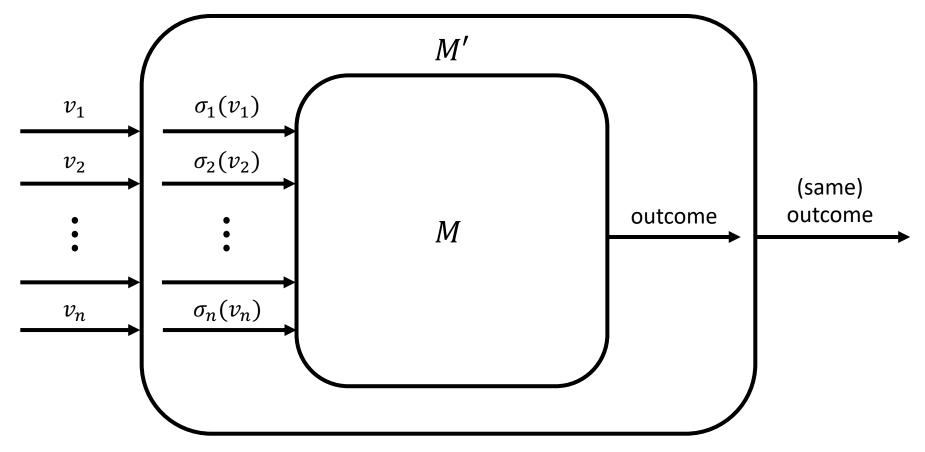
 $\mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \, \boldsymbol{x}_{i}(\sigma_{i}(\boldsymbol{v}_{i}), \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i})) - p_{i}(\sigma_{i}(\boldsymbol{v}_{i}), \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i}))] \geq \mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \, \boldsymbol{x}_{i}(\boldsymbol{b}_{i}, \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i})) - p_{i}(\boldsymbol{b}_{i}, \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i}))] \quad \forall i, \boldsymbol{v}_{i}, \boldsymbol{b}_{i}$

BIC: A mechanism (x, p) is Bayesian Incentive-Compatible (BIC) when

 $\mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_i \, \boldsymbol{x}_i(\boldsymbol{v}_i, \boldsymbol{v}_{-i}) - p_i(\boldsymbol{v}_i, \boldsymbol{v}_{-i})] \ge \mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_i \, \boldsymbol{x}_i(\boldsymbol{b}_i, \boldsymbol{v}_{-i}) - p_i(\boldsymbol{b}_i, \boldsymbol{v}_{-i}))] \quad \forall i, \boldsymbol{v}_i, \boldsymbol{b}_i$

Revelation Principle + Revenue Equivalence

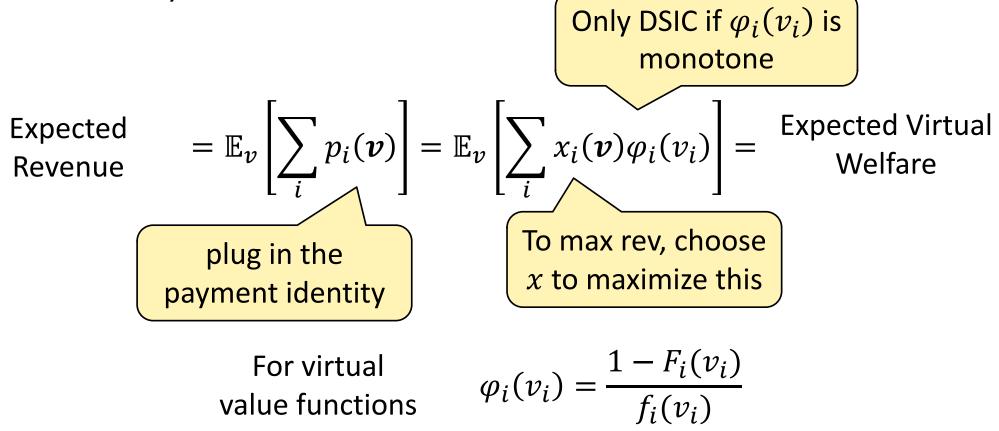
Revelation Principle: It is without loss to focus on [DS/B/EP]IC mechanisms.



Revenue Equivalence: Mechs w/ the same outcome have the same $\mathbb{E}[\text{Rev}]$.

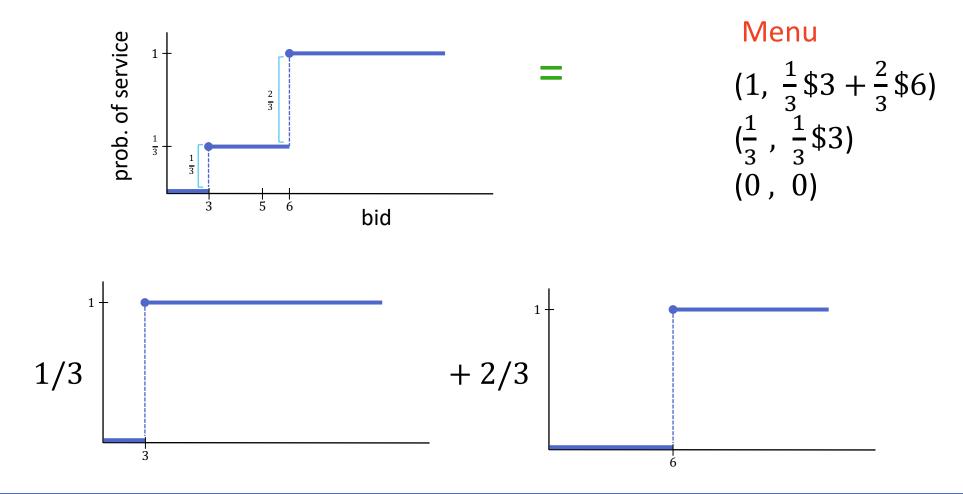
Maximizing Revenue

How can we max revenue? Can't just charge v_i – not IC. Still need the payment identity.

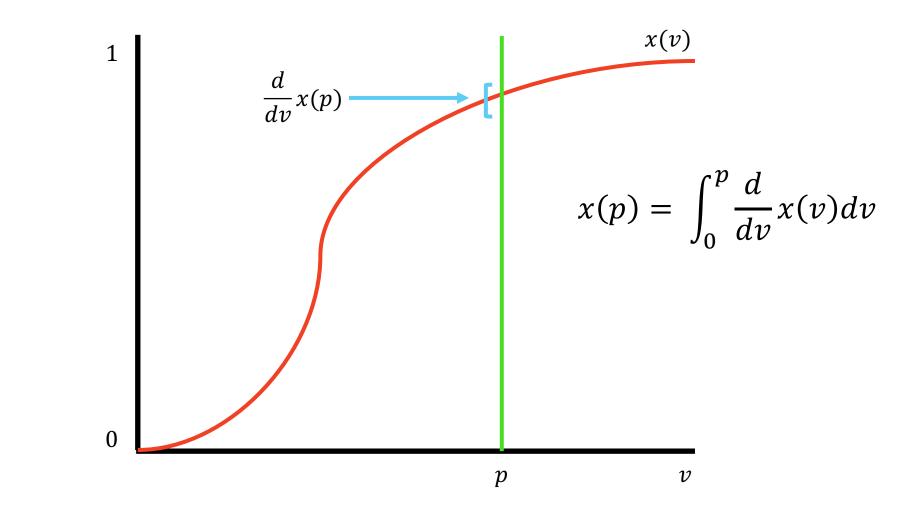


How else can we express revenue?

Any allocation rule can be expressed as a distribution of prices.



Any allocation is a distribution over prices



What is our revenue for a price p?

Single-bidder revenue curve $R(p) = p \cdot \Pr_{v}[v \ge p] = p \cdot [1 - F(p)]$

Moving to quantile space:

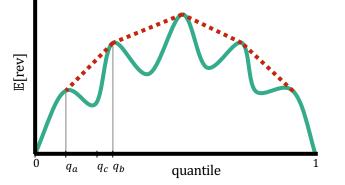
$$q = 1 - F(v)$$
 $v(q) = F^{-1}(1 - q)$ $q \sim U[0,1]$

Single-bidder revenue curve in quantile space

$$P(q) = v(q) \cdot q$$

Happily,

$$\frac{d}{dq}P(q) = \varphi(v(q))$$

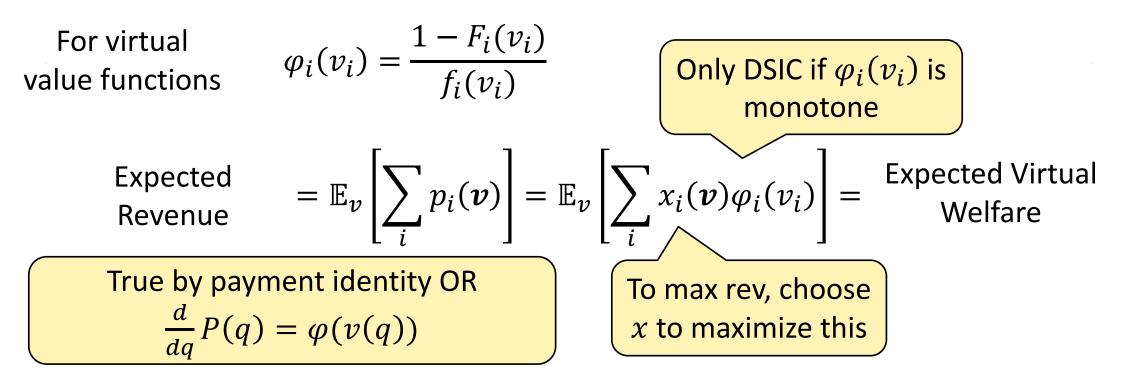


We define $\frac{d}{dq}\overline{P}(q) = \overline{\varphi}(q)$

$$v(q)$$
 where is $\overline{P}(\cdot)$ the concave closure of $P(\cdot)$.



Maximizing Revenue



$$= \mathbb{E}_{v}\left[\sum_{i} x_{i}(v) \bar{\varphi}_{i}(v_{i})\right]$$

with x = 0 when $\overline{\varphi}_i \neq \varphi_i$

Multiparameter Social Welfare: VCG is DSIC

$$x \coloneqq \operatorname{argmax} \sum_{j} v_j(x_j(b_i, b_{-i}))$$
More utility for bidding actual value:

$$v_i(x_i(v_i, b_{-i})) - p_i(v_i, b_{-i}) \ge v_i(x_i(b_i, b_{-i})) - p_i(b_i, b_{-i}) \quad \forall i, v_i, b_i, b_{-i}$$

$$i \text{ wants to max wrt } (v_i, b_{-i})$$

$$p_i(b_i, b_{-i}) = \sum_{j \neq i} b_j(x_j(0, b_{-i})) - \sum_{j \neq i} b_j(x_j(b_i, b_{-i}))$$

$$value v_i \qquad \max_{j \neq i} v_j(x_j(b_j) - p_i(b)) \qquad \max_{j \neq i} v_j(x_j(b_j, b_{-i}))$$

$$value v_i \qquad \max_{j \neq i} v_j(x_j(b_j) - p_i(b_j)) \qquad \max_{j \neq i} v_j(x_j(b_j, b_{-i}))$$