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Lagrangian Duality

We begin with a standard maximization problem subject to constraints, which we call the full
primal. The set P here denotes feasibility constraints, while x represents whatever our primal
variables are.

Full primal:

max f(x)

s.t. Ax ≤ b (dual variable λ)

x ∈ P

We denote the optimal solution to the full primal as x∗; that is, x∗ ∈ argmaxAx≤b,x∈Pf(x).

Partial Lagrangian Primal: We now form the partial Lagrangian primal by using the La-
grangian multiplier λi for each constraint of the form (Ax)i ≤ bi and moving it into the objective,
where we now minimize over the multipliers λ. We leave all of the feasibility constraints as is, and
define L(x;λ) as this new objective.

max
x∈P

min
λ≥0

L(x;λ) = max
x∈P

min
λ≥0

f(x) + λT (b−Ax)

First, we observe that the (partial) Lagrangian Primal is indeed a relaxation of the full primal. For
any feasible x, λ—that is, Ax ≤ b, x ∈ P, and λ ≥ 0—then f(x) ≤ L(x;λ).

Partial Lagrangian Dual: By reversing the order of the max and the min, we obtain the dual
minimization problem. We notate this dual problem as D(λ).

min
λ≥0

D(λ) = min
λ≥0

max
x∈P

f(x) + λT (b−Ax)

We denote the optimal dual solution as λ∗ ∈ argminλ≥0D(λ).

Complementary Slackness: We say that x, λ satisfy complementary slackness if λi > 0 =⇒
bi − (Ax)i = 0.

Weak Duality. The value of the full primal is always upper-bounded by the value of the dual
problem. Specifically, the value of the full primal is at most f(x∗) by definition, and any feasible
dual solution must satisfy λ ≥ 0, so the dual objective is larger: f(x∗) ≤ D(λ).



Proof.

f(x∗) ≤ f(x∗) + λT (b−Ax∗) λ ≥ 0, Ax∗ ≤ b
≤ max

x∈P
f(x) + λT (b−Ax) x∗ ∈ P

= D(λ)

Strong Duality. Strong duality implies that the value of the full primal is equal to the value of
the Lagrangian primal, and this is equal to the value of the Lagrangrian dual, when they are all at
their optimal solutions. However, strong duality is not a given. We see below that if strong duality
holds, there must exist a pair of primal, dual solutions that are optimal. Further, if there exist an
optimal pair, then strong duality must hold. Either condition is sufficient to show the other exists.

An Optimal Pair implies Strong Duality. For any choice of dual variables λ̂, if there exists
x̂ that forms an optimal pair with λ̂, that is, x̂ such that:

1. x̂ ∈ argmaxx∈PL(x; λ̂) (x̂ is optimal)

2. Ax̂ ≤ b (x̂ satisfies the Lagrangified constraints)

3. x̂, λ̂ satisfy complementary slackness

then strong duality holds, that is, D(λ̂) = f(x∗).

Proof.

D(λ̂) = max
x∈P
L(x, λ̂)

= f(x̂) + λ̂∗(b−Ax̂) by (1)

= f(x̂) by (3)

≤ f(x∗) by (2), x ∈ P

Strong Duality implies an Optimal Pair. If strong duality holds, that is, minλ≥0D(λ) =
f(x∗), then there exists x̂ such that

1. x̂ ∈ argmaxxL(x;λ∗)

2. Ax̂ ≤ b

3. x̂, λ∗ satisfy complementary slackness

4. f(x̂) = f(x∗).



Proof. From weak duality, we know that

min
λ≥0

D(λ) = D(λ∗) ≥ L(x∗, λ∗) ≥ f(x∗).

These inequalities must all hold with equality for the premise to hold. The first inequality’s tightness
implies condition (1), and the second inequality’s tightness implies condition (3). Condition (2) is
true by the definition of x∗.

For further background on Lagrangian duality, see [2].

Maximizing Revenue

Now we will use this theory of duality to formulate the general Lagrangian linear program for rev-
enue maximization. The following theory is due to Yang Cai, Nikhil Devanur, and Matt Weinberg
[CDW ’16]. We will let vi be a vector which can be indexed for each item j. Similarly for allocation
x at bidder i and item j. Vi represents the type space, or the support of the distribution Fi—the
possible valuations that vi can take.

We use ∅ to denote the type of not participating in the auction. Let V +
i = Vi ∪ {∅}. We

use P to denote the polytope of feasible allocation rules.

Decision variables interim allocations xij(vi) and payments pi(vi).

max

n∑
i=1

∑
vi∈Vi

fi(vi) · pi(vi)

s.t. xi(vi) · vi − pi(vi) ≥ xi(v′i) · vi − pi(v′i) ∀i, vi ∈ Vi, v′i ∈ V +
i (dual variable λi(vi, v

′
i))

x ∈ P

Partial Lagrangian Primal:

max
x∈P,p

min
λ≥0

L(λ;x, p)

where

L(λ;x, p) =
n∑
i=1

∑
vi∈Vi

fi(vi) · pi(vi) +
∑
vi∈Vi

∑
v′i∈V

+
i

λi(vi, v
′
i) ·
(
vi ·
(
x(vi)− x(v′i)

)
−
(
pi(vi)− pi(v′i)

))
=

n∑
i=1

∑
vi∈Vi

pi(vi)

fi(vi) +
∑
v′i∈Vi

λi(v
′
i, vi)−

∑
v′i∈V

+
i

λi(vi, v
′
i)

+

n∑
i=1

∑
vi∈Vi

xi(vi)

 ∑
v′i∈V

+
i

vi · λi(vi, v′i)−
∑
v′i∈Vi

v′i · λi(v′i, vi)


Partial Lagrangian Dual:

min
λ≥0

max
x∈P,p

L(λ;x, p)



For the dual to provide a useful (finite) upper bound we need maxx∈P,p L(λ;x, p) < ∞. For this
to be true, we must have the coefficient of pi(vi) equal to 0, that is:

Then
n∑
i=1

∑
vi∈Vi

fi(vi)pi(vi) ≤
n∑
i=1

∑
vi∈Vi

fi(vi) · xi(vi) · Φλ
i (vi)

for

Φλ
i (vi) = vi −

1

fi(vi)

∑
v′i∈Vi

λi(v
′
i, vi)(v

′
i − vi).

and this holds with equality if and only if x, p, λ are optimal solutions to the primal and dual
respectively.



The Canonical Flow

The way that we will set the dual variables, which is in fact optimal in the single-dimensional
setting, is as follows: λi(v, v + 1) = 1− Fi(v + 1) = Prvi [vi > v + 1]. All other λi(v, v

′) = 0 except
λi(0,∅) = 1. Then

Φλ
i (vi) =

Figure 1: Left: The single-dimensional canonical dual resulting in Myersonian virtual values. Right:
The process for ironing.

Ironing

Whenever Φλ
i (v) > Φλ

i (v + 1), we perform the following ironing procedure, increasing λi(v + 1, v)
and λi(v, v + 1) by ε.
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