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Langrangian Duality for Revenue Approximation [CDW ’16]

Now we will use this theory of duality to formulate the general Lagrangian linear program for rev-
enue maximization. The following theory is due to Yang Cai, Nikhil Devanur, and Matt Weinberg
[CDW ’16]. We will let vi be a vector which can be indexed for each item j. Similarly for allocation
x at bidder i and item j. Vi represents the type space, or the support of the distribution Fi—the
possible valuations that vi can take.

We use ∅ to denote the type of not participating in the auction. Let V +
i = Vi ∪ {∅}. We

use P to denote the polytope of feasible allocation rules.

Decision variables interim allocations x̂ij(vi) and payments pi(vi).

max
n∑
i=1

∑
vi∈Vi

fi(vi) · pi(vi)

s.t. x̂i(vi) · vi − pi(vi) ≥ x̂i(v′i) · vi − pi(v′i) ∀i, vi ∈ Vi, v′i ∈ V +
i (dual variable λi(vi, v

′
i))

x̂ ∈ P

Partial Lagrangian Dual:

min
λ≥0

max
x∈P,p

L(λ;x, p)

where

L(λ;x, p) =
n∑
i=1

∑
vi∈Vi

pi(vi)

fi(vi) +
∑
v′i∈Vi

λi(v
′
i, vi)−

∑
v′i∈V

+
i

λi(vi, v
′
i)

+

n∑
i=1

∑
vi∈Vi

x̂i(vi)

 ∑
v′i∈V

+
i

vi · λi(vi, v′i)−
∑
v′i∈Vi

v′i · λi(v′i, vi)


For the dual to provide a useful (finite) upper bound we need maxx∈P,p L(λ;x, p) < ∞. For

this to be true, we must have the coefficient of pi(vi) equal to 0, that is:

fi(vi) +
∑
v′i∈Vi

λi(v
′
i, vi) =

∑
v′i∈V

+
i

λi(vi, v
′
i).

We think of this as a “flow conservation” constraint in the following set-up. A dual solution λ is
useful if and only if for each bidder i, λi forms a valid flow, i.e., if and only if the following satisfies
flow conservation at all nodes except the source and the sink:



• Nodes: A super source s and a super sink ∅, along with a node vi for every type vi ∈ Vi.

• Flow from s to vi of weight fi(vi) for all vi ∈ Vi.

• Flow from v to v′ of weight λi(v, v
′) for all v ∈ V and v′ ∈ V + (including the sink ∅).

Then
n∑
i=1

∑
vi∈Vi

fi(vi)pi(vi) ≤
n∑
i=1

∑
vi∈Vi

fi(vi) · x̂i(vi) · Φλ
i (vi)

for

Φλ
i (vi) = vi −

1

fi(vi)

∑
v′i∈Vi

λi(v
′
i, vi)(v

′
i − vi).

and this holds with equality if and only if x, p, λ are optimal solutions to the primal and dual
respectively.

The Canonical Flow

The way that we will set the dual variables, which is in fact optimal in the single-dimensional
setting, is as follows: λi(v + 1, v) = 1 − Fi(v) = Prvi [vi > v]. All other λi(v, v

′) = 0 except
λi(0,∅) = 1. Then

Φλ
i (vi) = ϕi(vi)

is Myerson’s virtual value.

Figure 1: Left: The single-dimensional canonical dual resulting in Myersonian virtual values. Right:
The process for ironing.

Ironing

For a non-monotone interval [L,H] in which Φλ
i (L) > · · · > Φλ

i (H), we augment the following dual
variables until Φλ

i (L) = · · · = Φλ
i (H) by increasing λi(v+1, v) and λi(v, v+1) by ε for v ∈ [L,H−1].



The Unit-Demand Setting

Let Pij(v−i) denote the price that bidder i could pay to receive exactly item j in the VCG mecha-
nism against other bidders with values v−i.

We then let R
v−i

j contain all types vi such that j ∈ argmaxk{(vik − Pik(v−i))
+}. That is, R

v−i

j

is the set of valuations under which bidder i prefers item j at the VCG price, breaking ties lexi-
cographically (by smallest item index)—if vi ∈ Rv−i

j then item j is bidder i’s favorite item under

valuation profile v. R
v−i

0 is the set of valuations such that bidder i prefers no item—all prices lead
to negative utility.

Then our “canonical flow” is as follows for bidder i.

Figure 2: Left: The canonical dual for a multi-parameter setting.

Claim 1. Under the above dual variables, we get that:

• For any type vi ∈ Rv−i

j , its corresponding virtual value Φ
v−i

ik (vi) for item k is exactly its value
vik for all non-favorite k 6= j.

• For any type vi ∈ Rv−i

j , its corresponding virtual value Φ
v−i

ij (vi) for favorite item j is exactly

ϕij(vij) = vij − 1−Fij(vij)
fij(vij)

.

• The following is true:

Rev(F ) =
∑
i

∑
vi∈Vi

fi(vi) · pi(vi) ≤
∑
i

∑
vi∈Vi

∑
j

fi(vi) · x̂ij(vi) · Φij(vi)

≤
∑
i

∑
vi∈Vi

∑
j

fi(vi) · x̂ij(vi) ·
(
vij · Prv−i

[
vi 6∈ R(v−i)

j

]
+ ϕ̄ij(vij) · Prv−i

[
vi ∈ R(v−i)

j

])



Further, for a single unit-demand bidder, the above quantity is equal to

=
∑
v∈V

∑
j

f(v) · x̂j(v) · vj · 1[v 6∈ Rj ] (Non-Favorite)

+
∑
v∈V

∑
j

f(v) · x̂j(v) · ϕ̄j(vj) · 1[v ∈ Rj ] (Single)

We will introduce the “copies setting” to show that for a single unit-demand bidder, we can
bound optimal revenue by 2 · optCopies.

The Copies Setting. [Chawla Hartline Kleinberg EC ’07]

• Description:

• Type of setting?

• optCopies(F ) =

Lemma 1. For any feasible x̂(·), Single ≤ optCopies.

Lemma 2. When the types are unit-demand, for any feasible x̂(·), Non-Favorite ≤ optCopies.
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