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Prophet Inequalities

You’re at a casino gambling, and are offered to play the following game. Items will arrive one-by-
one. As an item arrives, you see its value. You may only take a single item, and once you take an
item, the game ends. A priori, you know the distribution of each item. At some point there will
be a red item with the red distribution of values, and at some point there will be a blue item with
the blue distribution of values, and so forth. However, you do not know the order of items (it is
adversarial), and you do not know the exact values of the items (they are drawn from their specific
distributions). Your goal is to come up with an algorithm that competes with the prophet who is
all knowing, so knows the realization of values and the arrival order.

That is, n items will arrive in adversarial order. Item i (which is a label, not necessarily the
order) has value vi drawn from known distribution Fi. Your goal is to determine an algorithm Alg
such that the value you get from gambling competes with the prophet who always gets maxi vi.
However, your competition is over the randomness of the values that are drawn, so you only have
to compete with opt = Ev[maxi vi].

Figure 1: The prophet inequality problem.

To summarize:

• Goal: Pick one item; maximize its value.

• Gambler knows distribution for each item.

• Order is adversarial.

• Inspect each item online (see vi) and irrevocably decide whether to take or pass forever.

• Compete with opt = Ev[maxi vi].

The Prophet Inequality problem was posed by Samuel-Cahn ’84 [6], with the original solution and
analysis that we’ll see by Krengel Sucheston ’78 [4] and Garling. It was brought to Algorithmic
Mechanism Design by Hajiaghayi Kleinberg Sandholm ’07 [1], and a new analysis for this case was
developed by Kleinberg Weinberg ’12 [2, 3].

Prove the following.



Theorem 1. There is a threshold algorithm Alg such that when the gambler takes an item if and
only if its value is above T , Alg ≥ 1

2opt.

Determine what threshold T to use and prove this statement using the following steps:

1. Divide what the algorithm yields from an item (in expectation) into exactly the threshold
and the surplus above the threshold.

2. Lower bound your surplus term.

3. Set your threshold in order to combine like-terms and have opt pop out.

Note: Can you find two different thresholds that give this same approximation?

Proof. We consider two different ways to set the threshold, starting a proof of what our algorithm
obtains using the framework above. Let p denote the probability that some (at least one) vi ≥ T
for i ∈ [n].

We will set the threshold T such that either (1) T = 1
2E[maxi vi], or (2) such that p = 1

2 .
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Hence a threshold algorithm set using (1) or (2) produces a 1
2 -approximation to the prophet (a

1
2 -competitive ratio).

Exercise: You could see this as a mechanism for a buyer to maximize social welfare. Could you
design a mechanism to maximize revenue using the prophet inequality?

[Hint: Use virtual values.]



See Roughgarden Twenty Lectures (364A) Lecture 6 Section 3 for a formal treatment on how
to do this.

I’m not aware of any textbooks on the subject, but here is a list of resources on prophet inequalities
and the breadth of work in more recent research:

• 2017 Survey “An Economic View of Prophet Inequalities” by Brendan Lucier [5]:
https://sigecom.org/exchanges/volume 16/1/LUCIER.pdf

• 2016 Simons Bootcamp Talks by Matt Weinberg

– Part I: https://www.youtube.com/watch?v=NwF4Xr0-6Rc

– Part II: https://www.youtube.com/watch?v=E19TWolvn8I

• EC 2021 Tutorial on Prophet Inequalities by Michal Feldman, Thomas Kesselheim, and Sahil
Singla

– Website (slides and reading list): http://www.thomas-kesselheim.de/tutorial-prophet-
inequalities/

– Part 1: https://www.youtube.com/watch?v=qbHd0g9RkCg

– Part 2: https://www.youtube.com/watch?v=l20KP5IIgcQ

– Part 3: https://www.youtube.com/watch?v=lyOUcYfNEiA
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