
DS 574 Algorithmic Mechanism Design Lecture #16
Fall 2022 Prof. Kira Goldner

The Bulow-Klemperer Result

One famous result takes the form of resource augmentation.

Theorem 1 (Bulow Klemperer ’96). For i.i.d. regular single-item environments, the expected
revenue of the second-price auction with n + 1 agents is at least that of the optimal auction with n
agents.

Let’s talk about what this theorem is saying. Instead of finding the optimal auction tailored to
a distribution F for n agents, you can use the Vickrey auction, which requires no prior knowledge
of the distribution, so long as we require one extra bidder, regardless of the n that we start with,
and earn more revenue than optimal. We do have two strong assumptions here (aside from being
in the single-item environment):

• Bidders are i.i.d.—every bidder’s value is drawn from F , and independently at that.

• F is a regular distribution. That is, v − 1−F (v)
f(v) is monotone non-decreasing.

This result does not hold without these assumptions. However, it is a very strong result, should
our setting meet these assumptions.

Proof. First we claim that in the i.i.d. setting, the Vickrey auction earns the most revenue of all
mechanism that must allocate the item. To maximize expected revenue, we know it is equivalent to
maximize virtual welfare. If we must allocate the item in every case, then we should allocate the
item to the bidder with the highest virtual value even when the virtual value is negative. Because
we are in the i.i.d. setting and F is regular so ϕ(·) is monotone, virtual value functions are identical,
so the bidder with the highest virtual value is identical to the bidder with the highest value. That
is, the allocation rule is to always allocate to the highest bidder. This is precisely the allocation
rule of the Vickrey auction.

Now, we compare the revenue of the Vickrey auction on n + 1 bidders to another auction that
always allocates the item, and there earns at most as much revenue—call this mechanism M . This
mechanism runs the revenue-optimal mechanism for n bidders on the first n bidders 1, . . . , n. If the
item is not allocated in that mechanism, it is then allocated to bidder n + 1, so the item is always
allocated, and is designed for n + 1 bidders.

Then clearly
opt(n, F ) ≤ RevM (n + 1, F ) ≤ RevVickrey(n + 1, F ).

For more recent and complex Bulow-Klemperer style or “competition complexity” results, some
examples include [4, 1, 5, 2].



The Single Sample Mechanism

Can’t recruit extra buyers? Instead, we can just exclude one. This is what the single sample result
says.

Theorem 2. Given a random sample from a bidder’s distribution, posting it as a take-it-or-leave-it
price gives a 1

2 -approximation to the optimal revenue.

Figure 1: Geometric intuition for a posted-price from a single sample.

Proof. In quantile space! A randomly sampled value corresponds to a randomly sampled quantile,
sampled uniformly q ∼ U [0, 1] independent of the bidder’s distribution. The revenue from this
mechanism (call it M) is precisely Rev(M) = Eq∼U [0,1][R(q)] =

∫ 1
0 R(q) dq where R is the price-

posting revenue curve in quantile space. This is exactly the area under the R(·).
What does depend on the bidder’s distribution is the optimal quantile to sell to at a posted

price, some q∗. The optimal single-bidder revenue that we aim to approximate is opt = R(q∗).
This is exactly the area of the rectangle with a height of R(q∗) (the highest height of the curve)
and the full width of the curve from 0 to 1 (a width of 1)—R(q∗) · 1.

Now notice that the area under the curve contains the triangle with corners at (0, 0), (0, 1) and
(R(q∗), 1). Hence this triangle must have area R(q∗)/2, that is, opt/2, contained in the area under
of the curve, which is equal to

Rev(M) ≥ opt/2.

It turns out, using a single sample from the buyers’ distribution to set reserve prices and running
VCG is a good approximation to the optimal mechanism. See Hartline chapter 5 for more.

Interested in these sort of sample complexity results? A good foundational result is [7], and [3]
then [8] after that. A more recent result that also contains an introduction surveying other results
is [6].

Prophet Inequalities

See notes from Lecture 15.
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