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Mechanism Design Basics (continued)

Recap from last time: Each bidder i has a valuation (maximum willingness-to-pay) vi for an item,
earns utility (happiness) ui(·) depending on the outcome.

Definition 1. For a deterministic mechanism with at most one winner, a bidder with quasilinear
utility has utility

ui(·) =

{
vi − pi if i wins and pays pi

0 otherwise.

Mechanisms (1) receive bids, (2) determine who gets the good, and (3) decide on payments. The
question is, how should they do (2) and (3)?

Last time we began to discuss the benefits of a second-price auction (highest bidder wins and
pays the second-highest bid) over options like a first-price auction or all-pay auction: because
bidding in a second-price auction is straightforward. We’ll formalize that now.

Claim 1 (Dominant-Strategy Incentive-Compatibility). In a second-price auction, every bidder
has a dominant strategy : set its bid bi equal to its private valuation vi. That is, this strategy
maximizes the utility of bidder i, no matter what the other bidders do.

Proof. [Hint: Consider two cases of outcomes.]



Claim 2 (Individual Rationality). In a second-price auction, every truth-telling bidder is guaran-
teed non-negative utility.

Proof.

Theorem 1 (Vickrey). The Vickrey (second-price) auction satisfies the following three quite dif-
ferent and desirable properties:

(1) [strong incentive guarantees] It is dominant-strategy incentive-compatible (DSIC) and
individually rational (IR), i.e., Claims 1 and 2 hold.

(2) [strong performance guarantees] If bidders report truthfully, then the auction maximizes
the social surplus

n∑
i=1

vixi,

where xi is 1 if i wins and 0 if i loses, subject to the obvious feasibility constraint that∑n
i=1 xi ≤ 1 (i.e., there is only one item).

(3) [computational efficiency] The auction can be implemented in polynomial time.

In general, as we design mechanisms, we’ll take the following design approach:

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we assign bidders
to slots so that properties (2) strong performance guarantees and (3) computational efficiency
hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that property (1) strong
incentive guarantees holds?



Allocation and Payment Rules

Now, we formalize the concepts we’ve been using so far. A mechanism M = (x,p) is completely
determined by its allocation rule x and payment rule p.

Definition 2. An allocation rule x is a (potentially randomized) mapping from bidder actions
(bids b) to feasible outcomes in X.

In the single-item setting, what is the set of feasible outcomes X? We say x ∈ X where x =
(x1, . . . , xn) and xi denotes how much of the item bidder i gets.

• At most 1 item is allocated:
∑n

i=1 xi ≤ 1.

• A bidder is either allocated or isn’t: xi ∈ {0, 1} ∀i.

What does this mean for a potentially randomized allocation rule x(b)?

Definition 3. A payment rule p(b) ∈ Rn is a mapping from bidder actions (bids b) to (non-
negative) real numbers where pi(b) is the amount that bidder i pays in the outcome x(b).

Now we can formalize quasilinear utility in terms of general allocation and payment rules.

Definition 4. For a mechanism M = (x,p), a bidder with quasilinear utility has utility

ui(b) = vi · xi(b)− pi(b).

We’ll narrow our attention to payment rules that satisfy

pi(b) ∈ [0, bi · xi(b)]

for every i and b. The constraint that pi(b) ≥ 0 is equivalent to prohibiting the seller from paying
the bidders. The constraint that pi(b) ≤ bi · xi(b) ensures that a truth-telling bidder receives
nonnegative utility (do you see why?).

Again, our goal is to design DSIC mechanisms:

Definition 5. A mechanism is dominant-strategy incentive-compatible (DSIC) if it is a bidder’s
dominant strategy to bid their true value, i.e. it maximizes their utility, no matter what the other
bidders do. That is,

ui(vi,b−i) ≥ ui(z,b−i) ∀z,b−i.



Myerson’s Lemma

We now come to two important definitions. Both articulate a property of allocation rules.

Definition 6 (Implementable Allocation Rule). An allocation rule x is implementable if there is a
payment rule p such the sealed-bid auction (x,p) is DSIC.

Definition 7 (Monotone Allocation Rule). An allocation rule x for a single-parameter environment
is monotone if for every bidder i and bids b−i by the other bidders, the allocation xi(z,b−i) to i
is nondecreasing in its bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stuff.

Give an example of a monotone allocation rule:

Give an example of a non-monotone allocation rule:

We state Myerson’s Lemma in three parts; each is conceptually interesting and will be useful in
later applications.

Theorem 2 (Myerson’s Lemma [1]). Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mechanism
(x,p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].

(c) The payment rule in (b) is given by an explicit formula (see (4), below).

Myerson’s Lemma is the foundation on which we’ll build most of our mechanism design
theory. Let’s review what it is saying.

Part (a): Finding an allocation rule that can be made DSIC (is implementable, Definition 6) seems con-
fusing, but is actually equivalent to and just as easy as checking if the allocation is monotone
(Definition 7).

Part (b): If an allocation rule is implementable (can be made to be DSIC), then there’s no ambiguity
in what the payment rule should be.

Part (c): There’s a simple and explicit formula for this!

Proof of Myerson’s Lemma (Theorem 2). As shorthand, write x(z) and p(z) for the allocation
xi(z,b−i) and payment pi(z,b−i) of i when it bids z, respectively.



Suppose (x,p) is DSIC, and consider any 0 ≤ y < z. Because bidder i might well have private
valuation z and can submit the false bid y if it wants, DSIC demands that

︸ ︷︷ ︸
utility of bidding z given value z

≥ ︸ ︷︷ ︸
utility of bidding y given value z

(1)

Similarly, since bidder i might well have the private valuation y and could submit the false bid
z, (x,p) must satisfy

︸ ︷︷ ︸
utility of bidding y given value y

≥ ︸ ︷︷ ︸
utility of bidding z given value y

(2)

Rearranging inequalities (1) and (2) yields the following sandwich, bounding p(y) − p(z) from
below and above:

z · [x(y)− x(z)] ≤ p(y)− p(z) ≤ y · [x(y)− x(z)] (3)

From here, we can conclude:

• x must be monotone.

• p′(z) = z · x′(z).

Why?

Assuming that p(0) = 0 and integrating then gives the payment identity

pi(bi,b−i) =

or alternatively, after integration by parts,

pi(bi,b−i) = (4)

for every bidder i, bid bi, and bids b−i by the others.
Equation (3) tells us that this is the only payment rule that could possibly be DSIC. But does

it in fact satisfy DSIC when x is monotone?



Bidder i’s utility will then be

ui(bi,b−i) =

which is maximized when bi =

independent of b−i, as desired. �

Single-Parameter Environments

All of our definitions and Myerson’s Lemma actually apply to a more general setting which we call
single-parameter environments. The main idea here is that each bidder i only has a single piece
of private information, like their value vi, that needs to be elicited in order to run the mechanism.
Here are some other examples of non-single-item yet single-parameter environments.

• Single-item: A seller has a single item to sell. The set of feasible outcomes X satisfy∑n
i=1 xi ≤ 1 and xi ∈ {0, 1}.

• k identical items: A seller has k identical items to sell and each buyer gets at most one.
The set of feasible outcomes X satisfy:

• Sponsored search: There are k advertising slots, each with click-through-rate αj . A buyer
i gets value vi ·αj from winning the jth slot. The set of feasible outcomes X satisfy

∑n
i=1 xi ≤∑k

j=1 αj and xi ∈ {αj}kj=1 ∪ {0} where xi = αj if bidder i is assigned the jth slot.

Exercise (optional): Graph an allocation rule as a function of a single-bidder (hold b−i fixed) with
value on the x-axis and allocation on the y-axis. Show that for a DSIC auction, Myerson’s Lemma
implies that the payment is the area to the left of the allocation curve, and a bidder’s utility is the
area under the allocation curve.
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