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Interdependent Values I

Thus far, we have been discussing private independent values. That is, each bidder i has
private information vi regarding their value for item i.

However, in many settings, there valuations may be correlated between buyers, depend
on one another’s information, or even be common.

The Interdependent Values Model [2]. Each bidder has a private signal si that is a
piece of information about the item, so in total the information about the item is s1, . . . , sn,
but is distributed amongst the different buyers. Each buyer has a public valuation function
vi(s1, · · · , sn) that dictates how the buyer aggregates the information into a value for the
item.

Example: Common values [4]: The average of estimates vi(s1, . . . , sn) = 1
n

∑
i si ∀i, or the

wallet game vi(s1, . . . , sn) =
∑

i si ∀i.

Optimal Social Welfare

Mechanisms. How can we maximize social welfare in this setting, optimally? What does
a mechanism even look like?

• Report: A bid of a signal bi for each bidder i, truthful when bi = si.

• Calculate: vi(b) for each bidder i

• Allocate to: [This is the decision of the mechanism.]

Incentive Compatibility. What conditions are necessary for maximizing social welfare
optimally to be incentive-compatible? What definition of incentive-compatible are we going
for?

Give an example showing why we can’t expect our mechanisms to be DSIC.

So the next best we can hope for is EPIC. In this context that means:

Definition 1. Truth-telling is said to be ex-post Nash if, for every bidder i, for every possible
realization of the other bidders’ signals s−i, and given that other bidders report their signals
truthfully, then it is in bidder i’ best interest to report her true signal.

What is the analogue of Myerson’s Lemma in the interdependent setting?



Lemma 1 (Myerson Analogue [3]). For every interdependent values setting,

(a) An allocation rule x is implementable as EPIC and ex post IR if and only if for every
i, s−i, the allocation rule xi is monotone non-decreasing in the signal si.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mecha-
nism (x,p) is EPIC and ex-post IR.

(c) The payment rule in is given by:

pi(s) = xi(s)vi(s)−
∫ vi(si,s−i)

vi(0,s−i)

xi(v
−1
i (t | s−i), s−i)dt

− [xi(0, s−i)vi(0, s−i)− pi(0, s−i)] ;

pi(0, s−i) ≤ xi(0, s−i)vi(0, s−i).

Derivation. Fix a bidder i with public valuation function vi(·). Let si` be the `th possible
realization of si in the discrete support of i’s signals. Fix the signals of the other bidders
s−i, and we discuss the possible values of bidder i in the context of the support of the values
{si0 = 0, si1, . . . , sik} for some high k.

For notational brevity, in the following derivation, we drop the s−i in the input, writing
just vi(si), xi(si), and pi(si) instead of vi(si, s−i), xi(si, s−i), and pi(si, s−i). Then using the
fact that we seek an EPIC mechanism, we deduce the following.

The bidder with signal si` prefers truthful reporting to reporting si`−1:

vi(si`)xi(si`)− pi(si`) ≥ vi(si`)xi(si`−1)− pi(si`−1)

The bidder with signal si`−1 prefers truthful reporting to reporting si`:

vi(si`−1)xi(si`−1)− pi(si`−1) ≥ vi(si`−1)xi(si`)− pi(si`)

Thus, this gives that:

vi(si`) [xi(si`)− xi(si`−1)] ≥ pi(si`)− pi(si`−1)
≥ vi(si`−1) [xi(si`)− xi(si`−1)] .

Under the assumption that si0 = 0, this gives

∂

∂si
pi(si, s−i) ≥ vi(si, s−i)

∂

∂si
xi(si, s−i)



and hence

pi(si, s−i) =

∫ si

0

∂

∂z
pi(z, s−i) dz + pi(0, s−i)

=

∫ si

0

vi(z, s−i)
∂

∂si
xi(z, s−i) dz + pi(0, s−i)

= xi(s)vi(s)− xi(0, s−i)vi(0, s−i)−
∫ si

0

xi(z, s−i)
∂

∂z
vi(z, s−i) dz + pi(0, s−i)

= xi(s)vi(s)−
∫ si

0

xi(z, s−i)
∂

∂z
vi(z, s−i) dz − [xi(0, s−i)vi(0, s−i)− pi(0, s−i)]

= xi(s)vi(s)−
∫ vi(si,s−i)

vi(0,s−i)

xi(v
−1
i (t | s−i), s−i)dt− [xi(0, s−i)vi(0, s−i)− pi(0, s−i)] .

And we need to also ensure ex-post individual rationality for the type with signal 0:

pi(0, s−i) ≤ xi(0, s−i)vi(0, s−i).

This is typically guaranteed by setting p(0) = 0 in the independent private value setting, but
si = 0 doesn’t mean that vi(0, s−i) = 0. Guaranteeing it for the type with signal 0 ensures
it for the rest of the types by the payment identity (which ensures EPIC among types).

What allocation will maximize social welfare?

The Vickrey Auction modified for the interdependent setting: collect signals, compute val-
ues, and allocate to the buyer with the highest value.

Payments. What are the payments?

Fix the signals of other bidders s−i. When bidder i is the winner, they pay their value
at their critical signal s∗i . That is, at the signal s∗i (s−i) where they begin winning (being the
highest bidder), s∗i = min{z | xi(vi(z, s−i)) = 1}.

Truthfulness. Is this mechanism EPIC? When might it not be?

When xi(·) is not monotone in si for some i—when, for some s−i, as i increases their signal,
they go from being the highest bidder to not the highest bidder.

Assumptions. What assumption could we place on the class of valuations to ensure that
the mechanism is always EPIC?

Once i is the highest-valued bidder, then as they increase their signal si, they remain the
highest bidder. We call this single-crossing—once they cross the other bidders’ values and
become the highest, they never cross back down to become lower than the highest. This is
precisely the condition that makes Vickrey truthful.



More specifically, we will ask that bidder i is most sensitive to their own signal. Formally,
the single-crossing condition requires that for all bidders i and j,

∂

∂si
vi(si, s−i) ≥

∂

∂si
vj(si, s−i).

Beyond Single-Crossing [1]

What happens when we don’t have single-crossing? Can we at least guarantee some approx-
imation to social welfare?

Example. [Impossibility for deterministic prior-free mechanisms without SC.] Consider
a scenario with two bidders (bidder 1 and bidder 2), where S1 = {0, 1} and S2 = {0}, and
the following valuation functions:

v1(s1 = 0, s2 = 0) = r; v1(s1 = 1, s2 = 0) = r;

v2(s1 = 0, s2 = 0) = 1; v2(s1 = 1, s2 = 0) = r2.

It is easy to see that v1 does not satisfy single-crossing since when s1 increases, v1 does not
increase but v2 increases by r2−1, making v1 go from being r times greater than v2 to being
r times smaller than it.

We claim that, for these valuations, no truthful, deterministic, and prior-free mecha-
nism has an approximation ratio better than r. To see this, consider the signal profile
(s1 = 0, s2 = 0). To get a better than r-approximation for this profile, bidder 1 must win
the item. Truthfulness requires the allocation to be monotone in each bidder’s signal, hence
bidder 1 must also win at report (s1 = 1, s2 = 0), which results in an allocation that is a
factor of r off from the optimal allocation. Since r is arbitrary, the approximation ratio is
arbitrarily bad.

Example. [Impossibility result for randomized mechanisms without SC.] Consider the case
where every bidder has the following signal distribution for some small ε > 0,

si =

{
1 w.p. ε

0 w.p. 1− ε,

and each agent i has a valuation vi(s) =
∏

j 6=i sj; that is, the bidder has a value 1 if and only
if every other agent has signal 1. The optimal expected welfare is 1 whenever at least n− 1
bidders have a 1 signal. This happens with probability εn + n · εn−1(1− ε). Therefore,

opt = εn + n · εn−1(1− ε) > nεn−1(1− ε). (1)

Consider any truthful mechanism at profile (si = 0, s−i = 1). At this profile, the mechanism
gets bidder i’s value in welfare with probability that he is allocated, xi(si = 0, s−i = 1), and
otherwise gets zero since no other bidder has non-zero value. By monotonicity, for every i,



we have that xi(si = 0, s−i = 1) ≤ xi(1), and by feasibility,
∑

i xi(1) ≤ 1. Under any other
profile (where at least two signals are 0), all agents have zero value, so welfare is zero. The
expected welfare of any truthful mechanism is thus bounded by

Welfare =
∑
i

Pr[si = 0, s−i = 1] · xi(si = 0, s−i = 1) · 1 + Pr[s = 1]
∑
i

xi(1) · 1

=
∑
i

εn−1(1− ε) · xi(si = 0, s−i = 1) + εn
∑
i

xi(1)

≤ εn−1(1− ε)
∑
i

xi(1) + εn
∑
i

xi(1)

≤ εn−1(1− ε) + εn

= εn−1. (2)

Combining (1) with (2), we get that the approximation ratio of any monotone mechanism is
Welfare/opt ≤ 1

n(1−ε) which can be made arbitrarily close to 1/n; this is the same as the
welfare attained by just allocating to a random bidder.

A Restricted Class. Optimal welfare is not attainable for general valuations. For what
natural restricted class of valuations can we achieve some α-approximation to optimal social
welfare for every profile of signals s (prior-free) with an EPIC mechanism?
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