DS 574 Algorithmic Mechanism Design
Fall 2022

Lecture \#23 Worksheet
Prof. Kira Goldner

Selling Separately or Bundling

Consider the setting with a revenue-maximizing monopolist who has two heterogenous items to sell (an apple and an orange) and a single additive buyer with values v_{1} and v_{2} for item 1 and 2 respectively. What mechanism should the monopolist use?

Two of the simplest possible mechanisms are as follows:

- (SREV) Sell the items separately. Post a price of p_{i} on each item i, optimizing these prices to maximize expected revenue from your distribution. The revenue from optimally selling items separately SREV $\geq \sum_{i} p_{i} P r_{v_{i}}\left[v_{i} \geq p_{i}\right]$ for valid prices p_{i}.
- (brev) Sell the items together in one grand bundle as if they were a single item with some price p. Optimize this price to maximize expected revenue from your distribution. The revenue from optimally selling the grand bundle BREV $\geq p \cdot \operatorname{Pr}_{v}\left[\sum_{i} v_{i} \geq p\right]$.

Why Getting the Optimal Mechanism is Tricky

Example 1: Bundling Can Be Better. Suppose $v_{1}, v_{2} \sim U\{1,2\}$.
Selling separately revenue:
Grand bundle revenue:
Example 2: Better than Bundling. Suppose $v_{1}, v_{2} \sim U\{0,1,2\}$.
Selling separately revenue:
Bundle revenue:
Different option: One item at 2, both at 3 . Revenue:

Example 3: Randomization is Necessary. Suppose $v_{1}, v_{2} \sim F$ where $F= \begin{cases}1 & \text { w.p. } \frac{1}{6} \\ 2 & \text { w.p. } \frac{1}{2} \\ 4 & \text { w.p. } \frac{1}{3} .\end{cases}$
Selling separately revenue:
Bundle revenue:

Randomized option:

- Pay 1 for a lottery ticket that gets the first item w.p. .5
- Pay 1 for a lottery ticket that gets the first item w.p. .5.
- Pay 4 to get both items with certainty.

This auction yields revenue $3 \frac{17}{36}$.

Example 4: Sometimes Selling Separately is Best. Suppose we have m items where

$$
v_{i}= \begin{cases}2^{i} & \text { w.p. } 2^{-i} \\ 0 & \text { otherwise }\end{cases}
$$

Selling separately revenue:
Grand bundle revenue:

Approximately Optimal Revenue for an Additive Buyer

Note: Refer to Lecture 14 from October 25.

Bounding OPT. Previously, we used the Lagrangian duality framework of CDW '16, weak duality, and the Myersonian-like flow of dual variables to achieve the following upper bound on optimal revenue:

$$
\begin{array}{r}
\operatorname{Rev}(F) \leq \sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \quad \text { (Non-FAVORITE) } \\
+\sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot \bar{\varphi}_{j}\left(v_{j}\right) \cdot \mathbb{1}\left[v \in R_{j}\right] \quad \text { (SINGLE) }
\end{array}
$$

where R_{j} is the set of valuations v under which item j is the bidder's favorite item, breaking ties lexicographically (by smallest item index), and $\bar{\varphi}_{j}\left(v_{j}\right)$ is the standard ironed Myersonian virtual value for item j.

Bounding Single. We also saw that Single \leq Opt $^{\text {Copies }}$ where the Copies setting is a single-dimensional setting with $n m$ single-dimensional bidders, where copy (i, j) 's value for winning is $v_{i j}$ (just one parameter-which is still drawn from $F_{i j}$). $\operatorname{OPT}^{\text {Copies }}(F)$ is the revenue of Myerson's optimal auction in the copies setting induced by F.

The Core-Tail Split of Non-Favorite. When the bidder is additive, we further decompose non-favorite into two terms we call core and tail by partitioning the valuations by those with $v_{j} \leq r$ and those with $v_{j}>r$ for some threshold r, where we will choose r to be the optimal revenue earned by posting a separate price on each item, $r=$ SREV.

$$
\begin{aligned}
& \sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \quad \text { (NON-FAVORITE) } \\
& \quad \leq \sum_{v \in V} \sum_{j} f(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \\
& \quad=\sum_{j} \sum_{v_{j}>r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \sum_{v_{-j}} f_{-j}\left(v_{-j}\right) \cdot \mathbb{1}\left[v \notin R_{j}\right]+\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \sum_{v_{-j}} f_{-j}\left(v_{-j}\right) \cdot \mathbb{1}\left[v \notin R_{j}\right] \\
& \quad \leq \sum_{j} \sum_{v_{j}>r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right] \quad \text { (TAIL) } \quad+\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j} \quad(\mathrm{CORE})
\end{aligned}
$$

Bounding the Tail.

Lemma 1. TAIL \leq SREV .
Proof. By the definition of R_{j}, for any given v_{j},

$$
\operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right]{ }^{1}
$$

Posting a price of v_{j} on each item separately earns revenue at least because
then for all v_{j},

$$
v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right] \leq
$$

Thus

$$
\begin{aligned}
\text { TAIL } & \leq \\
& = \\
& \leq \text { SREV. }
\end{aligned}
$$

Bounding the Core.

Lemma 2. If we sell the grand bundle at price CORE $-2 r$, the bidder will purchase it with probability at least $1 / 2$. Then $\mathrm{BREV} \geq \frac{\mathrm{Core}}{2}-r$, or $\mathrm{CoRE} \leq 2 \mathrm{BREV}+2 \mathrm{SREV}$.

To prove this, we need the following fact from a technical lemma in CDW.

[^0]Technical Fact (CDW '16). Let x be a positive single dimensional random variable drawn from F of finite support such that for any number $a, a \cdot \operatorname{Pr}_{x \sim F}[x \geq a] \leq \mathcal{B}$ where \mathcal{B} is an absolute constant. Then for any positive number s, the second moment of the random variable $x_{s}=x \cdot \mathbb{1}[x \leq s]$ is upper-bounded by $2 \mathcal{B} \cdot s$.

Proof. For each item j define a new random variable c_{j} that 0 's out the part of the distribution not in the core as follows: Draw a sample v_{j}. If $v_{j} \in[0, r]$, then $c_{j}=v_{j}$. Otherwise, $c_{j}=0$.

Let $c=\sum_{j} c_{j}$ be the sum of these new core random variables. Notice that $\mathbb{E}[c]=$ $\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j}$. We now show that c, the sum of item values drawn only from the core, concentrates, because it has small variance.

We wish to show that pricing the grand bundle at $\mathbb{E}[c]-2 r$ sells with probability at least $1 / 2$, that is, that

$$
\operatorname{Pr}_{v \sim F}\left[\sum_{j} v_{j} \geq \mathbb{E}[c]-2 r\right] \geq \frac{1}{2}
$$

You may wish to use the following:

- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.
- If $Z=\sum_{i} X_{i}$ and the X_{i} 's are drawn independently, then $\operatorname{Var}[Z]=\sum_{i} \operatorname{Var}\left[X_{i}\right]$.
- Chebyshev's inequality: $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}$ where $t>0$.
- The above technical fact.
- Let $r_{j}=\max _{x}\left\{x \cdot \operatorname{Pr}_{v_{j}}\left[v_{j} \geq x\right]\right\}$ be the optimal selling-separately revenue from item j, and $r=\sum_{j} r_{j}$.

Putting it All Together.

Theorem 1. For a single additive bidder, OPT $\leq 2 \mathrm{BREV}+4$ SREV.
Proof.

[^0]: ${ }^{1}$ Really, \leq because of tie-breaking, but that's the right direction.

