Selling Separately or Bundling

Consider the setting with a revenue-maximizing monopolist who has two heterogenous items to sell (an apple and an orange) and a single additive buyer with values v_{1} and v_{2} for item 1 and 2 respectively. What mechanism should the monopolist use?

Two of the simplest possible mechanisms are as follows:

- (SREV) Sell the items separately. Post a price of p_{i} on each item i, optimizing these prices to maximize expected revenue from your distribution. The revenue from optimally selling items separately SREV $\geq \sum_{i} p_{i} P r_{v_{i}}\left[v_{i} \geq p_{i}\right]$ for valid prices p_{i}.
- (BREV) Sell the items together in one grand bundle as if they were a single item with some price p. Optimize this price to maximize expected revenue from your distribution. The revenue from optimally selling the grand bundle BREV $\geq p \cdot \operatorname{Pr}_{v}\left[\sum_{i} v_{i} \geq p\right]$.

Why Getting the Optimal Mechanism is Tricky

Example 1: Bundling Can Be Better. Suppose $v_{1}, v_{2} \sim U\{1,2\}$.
Selling separately revenue: 2 , by selling at 1 or 2 per item.
Grand bundle revenue: $9 / 4$, by selling at 3 w.p. $3 / 4$.
Example 2: Better than Bundling. Suppose $v_{1}, v_{2} \sim U\{0,1,2\}$.
Selling separately revenue: $4 / 3$, by selling at 0 or 1 per item.
Bundle revenue: $4 / 3$, by selling at 2 w.p. $2 / 3$.
Different option: One item at 2, both at 3 . Revenue of $13 / 9$.
Example 3: Randomization is Necessary. Suppose $v_{1}, v_{2} \sim F$ where

$$
F=\left\{\begin{array}{lll}
1 & \text { w.p. } \frac{1}{6} \\
2 & \text { w.p. } \frac{1}{2} \\
4 & \text { w.p. } \frac{1}{3} .
\end{array} \quad \text { This gives } \begin{array}{c|ccc}
v_{1} \backslash v_{2} & 1 & 2 & 4 \\
\hline 1 & 2 & 3 & 5 \\
2 & 3 & 4 & 6 \\
4 & 5 & 6 & 8
\end{array}\right.
$$

Deterministic outcomes: Nothing (must be priced 0), the first item, the second item, or both items. We then calculate the probability of sale and expected revenue for each of the
following:

					Price	Pr	Rev
	Price	Pr	Rev		2	1	1
	Price	Pr	Rev		3	35/36	35/12
1 item:	2	5/6	5/3	2 items:	4	29/36	29/9
	4	$5 / 6$ $1 / 3$	4/3 4		5	5/9	25/9
	4	1/3	4/3		6	4/9	8/3
					8	1/9	8/9

Selling separately is best at a price of 2 for a revenue of $5 / 3$; grand bundling is best at 4 for a revenue of $29 / 9$. The optimal deterministic revenue comes from either selling the bundle for 4 , or selling a single item for 4 or the bundle for 5 , both options earning 29/5. Randomized option:

- Pay 1 for a lottery ticket that gets the first item w.p. .5.
- Pay 1 for a lottery ticket that gets the first item w.p. .5.
- Pay 4 to get both items with certainty.

This auction yields revenue $3 \frac{17}{36}$.
Example 4: But Sometimes Selling Separately is Best. Suppose we have m items where

$$
v_{i}= \begin{cases}2^{i} & \text { w.p. } 2^{-i} \\ 0 & \text { otherwise }\end{cases}
$$

Selling separately revenue: Post 2^{i} for item i for expected revenue m.
Grand bundle revenue: For any price $b \in\left[2^{k}, 2^{k+1}\right.$), the buyer will only be willing to pay b for the bundle if they have a high value for some item $i \geq k$. In this case, the selling-separately revenue already captures for revenue for the high items. There is no concentration of values, which is why bundling doesn't help here.

Approximately Optimal Revenue for an Additive Buyer [1]

Note: Refer to Lecture 14 from October 25.

Bounding OPT. Previously, we used the Lagrangian duality framework of CDW '16 [2], weak duality, and the Myersonian-like flow of dual variables to achieve the following upper bound on optimal revenue:

$$
\begin{array}{r}
\operatorname{Rev}(F) \leq \sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \quad \text { (Non-FAVORITE) } \\
+\sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot \bar{\varphi}_{j}\left(v_{j}\right) \cdot \mathbb{1}\left[v \in R_{j}\right] \quad \text { (SingLE) }
\end{array}
$$

where R_{j} is the set of valuations v under which item j is the bidder's favorite item, breaking ties lexicographically (by smallest item index), and $\bar{\varphi}_{j}\left(v_{j}\right)$ is the standard ironed Myersonian virtual value for item j.

Bounding Single. We also saw that Single \leq Opt $^{\text {Copies }}$ where the Copies setting is a single-dimensional setting with $n m$ single-dimensional bidders, where copy (i, j) 's value for winning is $v_{i j}$ (just one parameter-which is still drawn from $F_{i j}$). $\operatorname{OPT}^{\text {Copies }}(F)$ is the revenue of Myerson's optimal auction in the copies setting induced by F.

The Core-Tail Split of Non-Favorite. When the bidder is additive, we further decompose non-favorite into two terms we call core and tail by partitioning the valuations by those with $v_{j} \leq r$ and those with $v_{j}>r$ for some threshold r, where we will choose r to be the optimal revenue earned by posting a separate price on each item, $r=$ SREV.

$$
\begin{align*}
& \sum_{v \in V} \sum_{j} f(v) \cdot \hat{x}_{j}(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \quad \text { (NON-FAVORITE) } \\
& \quad \leq \sum_{v \in V} \sum_{j} f(v) \cdot v_{j} \cdot \mathbb{1}\left[v \notin R_{j}\right] \\
& \quad=\sum_{j} \sum_{v_{j}>r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \sum_{v_{-j}} f_{-j}\left(v_{-j}\right) \cdot \mathbb{1}\left[v \notin R_{j}\right]+\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \sum_{v_{-j}} f_{-j}\left(v_{-j}\right) \cdot \mathbb{1}\left[v \notin R_{j}\right] \\
& \quad \leq \sum_{j} \sum_{v_{j}>r} f_{j}\left(v_{j}\right) \cdot v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right] \quad \text { (TAIL) } \quad+\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j} \quad \text { (CORE) } \tag{Core}
\end{align*}
$$

Bounding the Tail.

Lemma 1. TAIL \leq SREV .
Proof. By the definition of R_{j}, for any given v_{j},

$$
\operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right] \quad \leq^{1} \quad \operatorname{Pr}_{v_{-j}}\left[\exists k \neq j, v_{k} \geq v_{j}\right] .
$$

Posting a price of v_{j} on each item separately earns revenue at least $v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[\exists k \neq j, v_{k} \geq v_{j}\right]$, as in this case, the buyer will purchase at price v_{j} with certainty. Then

$$
v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[v \notin R_{j}\right] \leq v_{j} \cdot \operatorname{Pr}_{v_{-j}}\left[\exists k \neq j, v_{k} \geq v_{j}\right] \leq \operatorname{SREV}
$$

for all v_{j}. Thus

$$
\mathrm{TAIL} \leq \operatorname{SREV} \cdot \sum_{j} \sum_{v_{j}>r} f_{j}\left(v_{j}\right)=\sum_{j} r \cdot \operatorname{Pr}_{v_{j}}\left[v_{j}>r\right] \leq \operatorname{SREV} .
$$

because r is a valid price to post on each item, and SREV is the revenue from the optimal item prices.

[^0]Lemma 2. If we sell the grand bundle at price Core $-2 r$, the bidder will purchase it with probability at least $1 / 2$. Then $\mathrm{BREV} \geq \frac{\mathrm{CoRe}}{2}-r$, or CORE $\leq 2 \mathrm{BREV}+2 \mathrm{SREV}$.

To prove this, we need the following fact from a technical lemma in CDW.

Technical Fact (CDW '16). Let x be a positive signle dimensional random variable drawn from F of finite support such that for any number $a, a \cdot \operatorname{Pr}_{x \sim F}[x \geq a] \leq \mathcal{B}$ where \mathcal{B} is an absolute constant. Then for any positive number s, the second moment of the random variable $x_{s}=x \cdot \mathbb{1}[x \leq s]$ is upper-bounded by $2 \mathcal{B} \cdot s$.

Proof. For each item j define a new random variable c_{j} that 0 's out the part of the distribution not in the core as follows: Draw a sample v_{j}. If $v_{j} \in[0, r]$, then $c_{j}=v_{j}$. Otherwise, $c_{j}=0$.

Let $c=\sum_{j} c_{j}$ be the sum of these new core random variables. Notice that $\mathbb{E}[c]=$ $\sum_{j} \sum_{v_{j} \leq r} f_{j}\left(v_{j}\right) \cdot v_{j}$. We now show that c, the sum of item values drawn only from the core, concentrates, because it has small variance.

We wish to show that pricing the grand bundle at $\mathbb{E}[c]-2 r$ sells with probability at least $1 / 2$, that is, that

$$
\operatorname{Pr}_{v \sim F}\left[\sum_{j} v_{j} \geq \mathbb{E}[c]-2 r\right] \geq \frac{1}{2}
$$

You may wish to use the following:

- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.
- If $Z=\sum_{i} X_{i}$ and the $X_{i}{ }^{\prime}$'s are drawn independently, then $\operatorname{Var}[Z]=\sum_{i} \operatorname{Var}\left[X_{i}\right]$.
- Chebyshev's inequality: $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}$ where $t>0$.
- The above technical fact.
- Let $r_{j}=\max _{x}\left\{x \cdot \operatorname{Pr}_{v_{j}}\left[v_{j} \geq x\right]\right\}$ be the optimal selling-separately revenue from item j, and $r=\sum_{j} r_{j}$.

Because the c_{j} 's are independently drawn, then

$$
\operatorname{Var}[c]=\sum_{j} \operatorname{Var}\left[c_{j}\right] \leq \sum_{j} \mathbb{E}\left[c_{j}^{2}\right]
$$

We will bound each $\mathbb{E}\left[c_{j}^{2}\right]$ separately. Let $r_{j}=\max _{x}\left\{x \cdot \operatorname{Pr}_{v_{j}}\left[v_{j} \geq x\right]\right\}$. By the above fact, we can upper bound $\mathbb{E}\left[c_{j}^{2}\right]$ by $2 r_{j} \cdot r$. On the other hand, $r=\sum_{j} r_{j}$ (as this is the definition of SREV), so $\operatorname{Var}[c] \leq 2 r^{2}$. By the Chebyshev inequality,

$$
\operatorname{Pr}[c \leq \mathbb{E}[c]-2 r] \leq \frac{\operatorname{Var}[c]}{4 r^{2}} \leq \frac{1}{2}
$$

Therefore,

$$
\operatorname{Pr}_{v \sim F}\left[\sum_{j} v_{j} \geq \mathbb{E}[c]-2 r\right] \geq \operatorname{Pr}[c \geq \mathbb{E}[c]-2 r] \geq \frac{1}{2}
$$

Then BREV $\geq \frac{\mathbb{E}[c]-2 r}{2}$, as we can sell the grand bundle at price $\mathbb{E}[c]-2 r$, and it will be purchased with probability at least $1 / 2$.

Theorem 1. For a single additive bidder, the optimal revenue is $\leq 2 \mathrm{BREV}+4$ SREV.
Proof. As shown previously, opt \leq Single + Core + TAIL and Single \leq opt $^{\text {Copies }}$. Note that in the additive setting, the optimal revenue from the copies setting is equal to SREV, as each item is sold separately with no feasibility constraint.

Lemma 1 shows that TAIL \leq SREV and Lemma ?? shows that Core $\leq 2 \operatorname{SREV}+2 \mathrm{BREV}$, hence

$$
\mathrm{OPT} \leq 2 \mathrm{BREV}+4 \mathrm{SREV} \leq 6 \max \{\mathrm{SREV}, \mathrm{BREV}\}
$$

so the better of selling separately or selling the grand bundle gives a 6-approximation to the optimal revenue for a single additive buyer.

References

[1] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. A Simple and Approximately Optimal Mechanism for an Additive Buyer. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 21-30. IEEE, 2014.
[2] Yang Cai, Nikhil R. Devanur, and S. Matthew Weinberg. A Duality Based Unified Approach to Bayesian Mechanism Design. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC '16, pages 926-939, New York, NY, USA, 2016. ACM.

[^0]: ${ }^{1}$ It would be $=$ but for lexicographical tie-breaking to determine R_{j}.

