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Selling Separately or Bundling

Consider the setting with a revenue-maximizing monopolist who has two heterogenous items
to sell (an apple and an orange) and a single additive buyer with values v1 and v2 for item
1 and 2 respectively. What mechanism should the monopolist use?

Two of the simplest possible mechanisms are as follows:

• (srev) Sell the items separately. Post a price of pi on each item i, optimizing these
prices to maximize expected revenue from your distribution. The revenue from opti-
mally selling items separately srev ≥

∑
i piPrvi [vi ≥ pi] for valid prices pi.

• (brev) Sell the items together in one grand bundle as if they were a single item with
some price p. Optimize this price to maximize expected revenue from your distribution.
The revenue from optimally selling the grand bundle brev ≥ p · Prv[

∑
i vi ≥ p].

Why Getting the Optimal Mechanism is Tricky

Example 1: Bundling Can Be Better. Suppose v1, v2 ∼ U{1, 2}.
Selling separately revenue: 2, by selling at 1 or 2 per item.
Grand bundle revenue: 9/4, by selling at 3 w.p. 3/4.

Example 2: Better than Bundling. Suppose v1, v2 ∼ U{0, 1, 2}.
Selling separately revenue: 4/3, by selling at 0 or 1 per item.
Bundle revenue: 4/3, by selling at 2 w.p. 2/3.
Different option: One item at 2, both at 3. Revenue of 13/9.

Example 3: Randomization is Necessary. Suppose v1, v2 ∼ F where

F =


1 w.p. 1

6

2 w.p. 1
2

4 w.p. 1
3
.

This gives

v1\v2 1 2 4
1 2 3 5
2 3 4 6
4 5 6 8

Deterministic outcomes: Nothing (must be priced 0), the first item, the second item, or
both items. We then calculate the probability of sale and expected revenue for each of the



following:

1 item:

Price Pr Rev
1 1 1
2 5/6 5/3
4 1/3 4/3

2 items:

Price Pr Rev
2 1 1
3 35/36 35/12
4 29/36 29/9
5 5/9 25/9
6 4/9 8/3
8 1/9 8/9

Selling separately is best at a price of 2 for a revenue of 5/3; grand bundling is best at 4 for
a revenue of 29/9. The optimal deterministic revenue comes from either selling the bundle
for 4, or selling a single item for 4 or the bundle for 5, both options earning 29/5.
Randomized option:

• Pay 1 for a lottery ticket that gets the first item w.p. .5.

• Pay 1 for a lottery ticket that gets the first item w.p. .5.

• Pay 4 to get both items with certainty.

This auction yields revenue 317
36

.

Example 4: But Sometimes Selling Separately is Best. Suppose we have m items
where

vi =

{
2i w.p. 2−i

0 otherwise.

Selling separately revenue: Post 2i for item i for expected revenue m.
Grand bundle revenue: For any price b ∈ [2k, 2k+1), the buyer will only be willing to pay b for
the bundle if they have a high value for some item i ≥ k. In this case, the selling-separately
revenue already captures for revenue for the high items. There is no concentration of values,
which is why bundling doesn’t help here.

Approximately Optimal Revenue for an Additive Buyer [1]

Note: Refer to Lecture 14 from October 25.

Bounding OPT. Previously, we used the Lagrangian duality framework of CDW ’16 [2],
weak duality, and the Myersonian-like flow of dual variables to achieve the following upper
bound on optimal revenue:

Rev(F ) ≤
∑
v∈V

∑
j

f(v) · x̂j(v) · vj · 1[v 6∈ Rj] (Non-Favorite)

+
∑
v∈V

∑
j

f(v) · x̂j(v) · ϕ̄j(vj) · 1[v ∈ Rj] (Single)



where Rj is the set of valuations v under which item j is the bidder’s favorite item, breaking
ties lexicographically (by smallest item index), and ϕ̄j(vj) is the standard ironed Myersonian
virtual value for item j.

Bounding Single. We also saw that Single ≤ optCopies where the Copies setting is
a single-dimensional setting with nm single-dimensional bidders, where copy (i, j)’s value
for winning is vij (just one parameter—which is still drawn from Fij). optCopies(F ) is the
revenue of Myerson’s optimal auction in the copies setting induced by F .

The Core-Tail Split of Non-Favorite. When the bidder is additive, we further de-
compose non-favorite into two terms we call core and tail by partitioning the valuations by
those with vj ≤ r and those with vj > r for some threshold r, where we will choose r to be
the optimal revenue earned by posting a separate price on each item, r = srev.

∑
v∈V

∑
j

f(v) · x̂j(v) · vj · 1[v 6∈ Rj] (Non-Favorite)

≤
∑
v∈V

∑
j

f(v) · vj · 1[v 6∈ Rj]

=
∑
j

∑
vj>r

fj(vj) · vj ·
∑
v−j

f−j(v−j) · 1[v 6∈ Rj] +
∑
j

∑
vj≤r

fj(vj) · vj ·
∑
v−j

f−j(v−j) · 1[v 6∈ Rj]

≤
∑
j

∑
vj>r

fj(vj) · vj · Prv−j
[v 6∈ Rj] (Tail) +

∑
j

∑
vj≤r

fj(vj) · vj (Core)

Bounding the Tail.

Lemma 1. Tail ≤ srev.

Proof. By the definition of Rj, for any given vj,

Prv−j
[v 6∈ Rj] ≤ 1 Prv−j

[∃k 6= j, vk ≥ vj].

Posting a price of vj on each item separately earns revenue at least vj ·Prv−j
[∃k 6= j, vk ≥ vj],

as in this case, the buyer will purchase at price vj with certainty. Then

vj · Prv−j
[v 6∈ Rj] ≤ vj · Prv−j

[∃k 6= j, vk ≥ vj] ≤ srev

for all vj. Thus

Tail ≤ srev ·
∑
j

∑
vj>r

fj(vj) =
∑
j

r · Prvj [vj > r] ≤ srev.

because r is a valid price to post on each item, and srev is the revenue from the optimal
item prices.

1It would be = but for lexicographical tie-breaking to determine Rj .



Lemma 2. If we sell the grand bundle at price Core− 2r, the bidder will purchase it with
probability at least 1/2. Then brev ≥ Core

2
− r, or Core ≤ 2brev + 2srev.

To prove this, we need the following fact from a technical lemma in CDW.

Technical Fact (CDW ’16). Let x be a positive signle dimensional random variable
drawn from F of finite support such that for any number a, a · Prx∼F [x ≥ a] ≤ B where B
is an absolute constant. Then for any positive number s, the second moment of the random
variable xs = x · 1[x ≤ s] is upper-bounded by 2B · s.

Proof. For each item j define a new random variable cj that 0’s out the part of the distri-
bution not in the core as follows: Draw a sample vj. If vj ∈ [0, r], then cj = vj. Otherwise,
cj = 0.

Let c =
∑

j cj be the sum of these new core random variables. Notice that E[c] =∑
j

∑
vj≤r fj(vj) · vj. We now show that c, the sum of item values drawn only from the core,

concentrates, because it has small variance.

We wish to show that pricing the grand bundle at E[c] − 2r sells with probability at least
1/2, that is, that

Prv∼F

[∑
j

vj ≥ E[c]− 2r

]
≥ 1

2
.

You may wish to use the following:

• Var[X] = E[X2]− E[X]2.

• If Z =
∑

i Xi and the Xi’s are drawn independently, then Var[Z] =
∑

i Var[Xi].

• Chebyshev’s inequality: Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 where t > 0.

• The above technical fact.

• Let rj = maxx{x ·Prvj [vj ≥ x]} be the optimal selling-separately revenue from item j,
and r =

∑
j rj.

Because the cj’s are independently drawn, then

Var[c] =
∑
j

Var[cj] ≤
∑
j

E[c2j ].

We will bound each E[c2j ] separately. Let rj = maxx{x ·Prvj [vj ≥ x]}. By the above fact, we
can upper bound E[c2j ] by 2rj · r. On the other hand, r =

∑
j rj (as this is the definition of

srev), so Var[c] ≤ 2r2. By the Chebyshev inequality,

Pr[c ≤ E[c]− 2r] ≤ Var[c]

4r2
≤ 1

2
.



Therefore,

Prv∼F

[∑
j

vj ≥ E[c]− 2r

]
≥ Pr[c ≥ E[c]− 2r] ≥ 1

2
.

Then brev ≥ E[c]−2r
2

, as we can sell the grand bundle at price E[c] − 2r, and it will be
purchased with probability at least 1/2.

Theorem 1. For a single additive bidder, the optimal revenue is ≤ 2brev + 4srev.

Proof. As shown previously, opt ≤ Single+Core+Tail and Single ≤ optCopies. Note
that in the additive setting, the optimal revenue from the copies setting is equal to srev, as
each item is sold separately with no feasibility constraint.

Lemma 1 shows that Tail ≤ srev and Lemma ?? shows that Core ≤ 2srev+ 2brev,
hence

opt ≤ 2brev + 4srev ≤ 6 max{srev,brev},

so the better of selling separately or selling the grand bundle gives a 6-approximation to the
optimal revenue for a single additive buyer.
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