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Single-Parameter Optimal Revenue (continued)

Virtual Welfare Recap

• Maximize welfare (
∑

i vixi): Always give the bidder the item, always give it away for free!

• Maximize revenue: Post a price that maximizes Rev = maxr r · [1− F (r)].

Using only the revelation principle and the payment identity pi(bi,b−i) = bi·xi(bi,b−i)−
∫ bi
0 xi(z,b−i) dz,

we proved the following:

Revenue = Ev∼F[
∑
i

pi(v)] = Ev∼F[
∑
i

ϕi(vi)xi(v)] = Virtual Welfare

where

ϕi(vi) = vi −
[1− Fi(vi)]

fi(vi)
.

Then similarly to welfare, just give the item to the bidder with the highest (non-negative) virtual
value! But this doesn’t work when ϕ(·) isn’t monotone, because then x(·) wouldn’t be.

Definition 1. A distribution F is regular if the corresponding virtual valuation function ϕ(v) =

v − 1−F (v)
f(v) is strictly increasing.

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value
functions are regular.

Figure 1: Virtual value functions ϕ(v) = v − 1−F (v)
f(v) for the uniform and bimodal agent examples.

It will be helpful to keep the following two examples in mind:

a. a uniform agent with v ∼ U [0, 1]. Then F (x) = x and f(x) = 1. ϕ(v) = 2v − 1.



b. a bimodal agent with

v ∼

{
U [0, 3] w.p.34
U(3, 8] w.p.14

and f(v) =

{
3
4 v ∈ [0, 3]
1
20 v ∈ (3, 8]

1− F (v) =

{
1
4 +

(
3−v
3

)
· 34 v ∈ [0, 3](

8−v
5

)
· 14 v ∈ (3, 8]

so ϕ(v) =

{
4
3(v − 1) v ∈ [0, 3]

2v − 8 v ∈ (3, 8]

Quantile Space and Ironing

Instead of talking in value space, where an agent has value v, the fraction of the distribution with
value above v is 1−F (v), and the revenue from posting a “take-it-or-leave-it” price of v is v[1−F (v)],
we will instead talk about quantiles.

Let 1− F (v) = q, the fraction of the distribution with a value at least v, willing to pay a price of
v. Quantile q refers to the the fraction of the distribution left above its corresponding value. For
example, consider a distribution that is U [$0, $10]. Then the quantile 0.1 corresponds to $9, where
10% of the population might have a higher value. We let v(q) denote the corresponding value, so
v(0.1) is $9.

Definition 2. The quantile of a single-dimensional agent with value v ∼ F is the measure with
respect to F of stronger values, i.e., q = 1 − F (v); the inverse demand curve maps an agent’s
quantile to her value, i.e., v(q) = F−1(1− q).

Quantiles are particularly useful because we can draw an agent from any distribution by drawing
a quantile q ∼ U [0, 1]. That is, for any q̂ and any distribution F , PrF [q ≤ q̂] = q̂. In English: the
probability that an agent has a value in the top 0.3 of the distribution is 0.3.

For everything we do today, we could stay in value space, but we’d have to normalize by the
distribution using f(v), which makes everything a bit messier and a bit trickier.

Example: For the example of a uniform agent where F (z) = z, the inverse demand curve is
v(q) = 1− q.

For an allocation rule x(·) in value space, we define an allocation rule in quantile space y(·):

y(q) = x(v(q)).

As x(·) is monotone weakly increasing, then y(·) is monotone weakly decreasing.

Definition 3. The price-posting revenue curve of a single-dimensional linear agent specified by
inverse demand curve v(·) is P (q) = q · v(q) for any q ∈ [0, 1].

Assuming the lower-end of the support of F is 0 and the upper end is some finite vmax, then
P (0) = 0 and P (1) = 0.

Claim 2. Any allocation rule y(·) can be expressed as a distribution of posted prices.



Proof. Given the allocation rule y(·), consider the distribution Gy(z) := 1 − y(z). We show that
the mechanism that randomly draws a quantile q̂ ∼ Gy from the distribution Gy and posts the
price v(q̂) is equivalent.

For a random price v(q̂) and fixed quantile q, then

Prq̂∼Gy [v(q̂) < v(q)] = Prq̂∼Gy [q̂ > q] = 1−Gy(q) = y(q).

Claim 3. A distribution F is regular if and only if its corresponding price-posting revenue curve
is concave.

Observe that P ′(q) = ϕ(v(q)):

P ′(q) =
d

dq
(q · v(q)) = v(q) + qv′(q) = v − 1− F (v)

f(v)
= ϕ(v(q)).

Thus Φ(q) =
∫ q
0 ϕ(q̂) dq̂ = P (q).

Definition 4. The ironing procedure for (non-monotone) virtual value function ϕ (in quantile
space) is:

(i) Define the cumulative virtual value function as Φ(q̂) =
∫ q̂
0 ϕ(q) dq.

(ii) Define ironed cumulative virtual value function as Φ̄(·) as the concave hull of Φ(·).

(iii) Define the ironed virtual value function as ϕ̄(q) = d
dq Φ̄(q) = Φ̄′(q).

Figure 2: The bimodal agent’s (ironed) revenue curve and virtual values in quantile space.



Theorem 1. For any monotone allocation rule y(·) and any virtual value function ϕ(·), the expected
virtual surplus of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

E[ϕ(q)y(q)] ≤ E[ϕ̄(q)y(q)].

Furthermore, this inequality holds with equality if the allocation rule y satisfies y′(q) = 0 for all q
where Φ̄(q) > Φ(q).

Proof. Recall integration by parts:∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx.

By integration by parts for any virtual value function ϕ(·) and monotone allocation rule y(·),

E[ϕ(q)y(q)] = E[−y′(q)Φ(q)].

Step by step, that is,

E[ϕ(q)y(q)] =

∫ 1

0
ϕ(q)y(q) dq q ∼ U [0, 1]

= Φ(1)y(1)− Φ(0)y(0)−
∫ 1

0
y′(q)Φ(q) dq

= 0 + E[−y′(q)Φ(q)].

because Φ(1) = 1 · v(1) = 0 as v(1) = 0, and Φ(0) = 0 · v(0) = 0. Notice that the weakly decreasing
monotonicity of the allocation rule y(·) implies the non-negativity of −y′(q). With the left-hand side
of equation as the expected virtual surplus, it is clear that a higher cumulative virtual value implies
no lower expected virtual surplus. By definition of Φ̄(·) as the concave hull of Φ(·), Φ(q) ≤ Φ̄(q)
and, therefore, for any monotone allocation rule, in expectation, the ironed virtual surplus is at
least the virtual surplus, i.e., E[−y(q)Φ(q)] ≤ E[−y(q)Φ̄(q)].

To see the equality under the assumption that y′(q) = 0 for all q where Φ̄(q) > Φ(q), rewrite
the difference between the ironed virtual surplus and the virtual surplus via equation as,

E[ϕ̄(q)y(q)]− E[ϕ(q)y(q)] = E[−y′(q)(Φ̄(q)− Φ(q))].

The assumption on y′ implies the term inside the expectation on the right-hand side is zero ∀q.

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are
as follows:

• Bidder 1 is uniform. F1(v) = v−1
H−1 on [1, H].

• Bidder 2 is exponential. F2(v) = 1− e−v for v ∈ (1,∞).

• Bidder 2 is exponential. F3(v) = 1− e−2v for v ∈ (1,∞).



What does the optimal mechanism look like?

First we calculate their virtual value functions.

• f1(v) = 1
H−1 for v ∈ [1, H]. ϕ1(v) = 2v −H.

• f2(v) = e−v for v ∈ (1,∞). ϕ2(v) = v − 1.

• f3(v) = 2e−2v for v ∈ (1,∞). ϕ3(v) = v − 1
2 .

The bidders have personalized reserve prices (i.e., have positive virtual values with vi above) r1 = H
2 ,

r2 = 1, r3 = 1
2 . Note that based on the support of F2 and F3 that bidder 2 and 3 are always above

their reserve prices.

The optimal mechanism excludes bidder 1 if v1 < r1 = H
2 , and otherwise allocates to the bid-

der with the largest virtual value ϕi(vi). If some ϕj(vj) is the second highest virtual value and
exceeds its reserve price, then bidder i pays a price of ϕ−1i (ϕj(vj)); otherwise, bidder i just pays ri.

Definition 5. A reserve price r is a minimum price below which no buyer may be allocated the
item. There may also be personalized reserve prices ri where if vi < ri then vi will not be allocated
to. Bidders above their reserves participate in the auction.


