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Intuition and Clarifications for Quantile Space and Ironing

Define quantiles mapping to values such that for any value v, q = 1− F (v) represents the fraction
of the distribution with value at least v, or willing to pay a price of v. Recall:

• q = 1− F (v)

• v(q) = F−1(1− q)

• Independent of F , q ∼ U [0, 1]: the probability that a value is drawn from the top .3 is .3.

• Quantile space flips: values are decreasing in increasing quantiles, and the allocation must be
weakly decreasing in increasing quantiles.

Today we’ll repeat the results from last time, but in value space. Remember, however, that while
we can do everything we did in quantile space instead in value space, because quantile space is
uniform always and value space is not, we’ll need to normalize by the distribution in value space.

Definition 1. The price-posting revenue curve of a single-dimensional linear agent specified by
R(v) = v · [1 − F (v)]. Pointwise this equal to the price-posting revenue curve in quantile space:
R(v(q)) = P (q) = v(q) · q.

Figure 1: A price-posting revenue curve in value space.

Note: This is only the revenue that can be achieved by posting a single take-it-or-leave-it price.
This does not capture the expected revenue of any given mechanism.

Claim 1. A distribution F is regular if and only if:

• its corresponding price-posting revenue curve in quantile space is concave.

• ϕ(q) is strictly increasing.

• f(v)ϕ(v) is strictly increasing.



(a) Price of $3. (b) Price of $6.

(c) Randomized price with expectation $5. (d) Ironed revenue curve.

Figure 2: (a) An allocation rule for a take-it-or-leave-it price of $3. (b) An allocation rule for a
take-it-or-leave-it price of $6. (c) An allocation that can be written x(v) = 0 for v < 3, x(v) = 1

3
for v ∈ [3, 6), and x(v) = 1 for v ≥ 6 . Alternatively, a randomized take-it-or-leave-it price that is
$3 with probability 1

3 and $6 with probability 2
3 , that is, $5 = 1

3 · 3 + 2
3 · 6 in expectation. (d) The

revenue curve in value space, including ironed intervals where convex combinations of prices can
attain higher revenue than deterministic prices.

Claim 2. Any DSIC allocation rule x(·) can be expressed as a distribution of posted prices.

Recall the ironing procedure: Take the concave hull of the price-posting revenue curve in
quantile space. Its derivative forms the ironed virtual values. (The derivatives of the original curve
are the original virtual values.)

Claim 3. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

Example: How would you obtain the ironed revenue at $5 instead of just R(5)?

For p ∈ [p, p] where R(p) > R(p), if p = αp+ (1−α)p, we achieve R(p) by randomizing the prices p
and p with probabilities α and 1−α accordingly to yield αR(p)+(1−α)R(p) on the concave closure.

Note: Recall that the expected revenue of any mechanism, not just a posted price, can be expressed
by its virtual welfare. (We have now shown that you could decompose it into a distribution of posted
prices and thus express the revenue that way, too, actually.)

Theorem 1. For any monotone allocation rule x(·) and any virtual value function ϕ(·), the expected
virtual welfare of an agent is upper-bounded by their expected ironed virtual welfare, i.e.,

E[ϕ(v)x(v)] ≤ E[ϕ̄(v)x(v)].



Furthermore, this inequality holds with equality if the allocation rule x satisfies x′(v) = 0 for all v
where Φ̄(v) > Φ(v).

What’s the final mechanism? Now that ϕ̄i(·) is monotone (for every i), we choose the x(·) that
maximizes Ev[

∑
i ϕi(v)xi(v)], which will thus be monotone. By Theorem 1, this is an upper bound

on the optimal revenue.

For any ironed interval [a, b], examine ϕ̄(v) for v ∈ [a, b]. P (q(v)) is a straight line (linear) there,
so ϕ̄(q(v)) will be constant.

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]? It will be con-
stant on [a, b], and thus its derivative will be zero.

Hence ironed virtual welfare is equal to virtual welfare by Theorem 1, so maximizing one max-
imizes the other.

Welfare Maximization in Multidimensional Settings

Multidimensional or multi-parameter environments are ones where we need to elicit more than one
piece of information per bidder. The most common settings include m heterogenous (different)
items and

• n unit-demand buyers; buyer i has value vij for item j but only wants at most 1 item. (You
only want to buy 1 house!)

• n additive buyers: buyer i’s value for set S is
∑

j∈S vij .

• n subadditive buyers for some subadditive functions

• n buyers who are k-demand: buyer i’s value for a set of items S is max|S′|=k,S′⊆S
∑

j∈S′ vij .

• n matroid-demand buyers for some matroid

• . . .

With m heterogenous items, it’s possible that our buyers could have different valuations for every
single one of the 2m bundles of items—that is why this general setting is referred to as combinatorial
auctions.

Then how can we maximize welfare in this setting? How can we do so tractably? How can we
even elicit preferences in a tractable way?

Theorem 2 (The Vickrey-Clarke-Groves (VCG) Mechanism). In every general mechanism design
environment, there is a DSIC welfare-maximizing mechanism.

Given bids b1, . . . ,bn where each bid is indexed by the possible outcomes Ω, we define the welfare-
maximizing allocation rule x by

x(b) = argmaxω∈Ω

n∑
i=1

bi(ω).



Now that things are multidimensional, there’s no more Myerson’s Lemma! In multiple dimensions,
what is monotonicity? What would the critical bid be?

Instead, we have bidders pay their externality—the loss of welfare caused due to i’s participation:

pi(b) = max
ω∈Ω

∑
j 6=i

bj(ω)︸ ︷︷ ︸
without i

−
∑
j 6=i

bj(ω
∗)︸ ︷︷ ︸

with i

where ω∗ = x(b) is the outcome chosen when i does participate.

Claim 4. The VCG mechanism is DSIC.

Proof. We show that the mechanism with (x, p) is DSIC: that setting bi = vi maximizes utility
vi(x(b))− pi(b). Fix i and b−i.

When the chosen outcome x(b) is ω∗, i’s utility is

vi(ω
∗)− pi(b) =

[
vi(ω

∗) +
∑
j 6=i

bj(ω
∗)

]
−
[

max
ω∈Ω

∑
j 6=i

bj(ω)

]
.

The second term is independent of i’s bid. The first term is equal to social welfare, which x is
chosen to maximize for the input bids. Thus the mechanism is aligned with i’s incentives, and i’s
utility is maximized when i reports their true valuations.

Exercise (optional): Prove that the payment pi(b) is always non-negative (and so the mechanism
is IR).

Proof. The outcome in the first term of the payment is chosen to maximize it, whereas the second
term is the same but not with the optimal outcome for the term, hence the first term is larger.


