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Introduction to Linear Programming and Duality

Why Linear Programming rocks:

• Incredibly general: Almost all problems from undergrad algorithms can be formulated as a
linear program.

• Computationally tractable

– In theory: Can be solved in polynomial time

– In practice: Fast with input sizes up into the millions!

• Contains many properties that can be turned into useful algorithmic paradigms and analysis:

– Duality:

∗ Solve an easier equivalent problem.

∗ How do we know when we’re done?

– Complementary Slackness and Strong Duality: something is optimal!

How to Think About Linear Programming

Comparison to Systems of Linear Equations

Think back to linear systems of equations. Such a system consists of m linear equations in real-
valued variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a12xn = b1

a21x1 + a22x2 + · · ·+ a22xn = b2
...

am1x1 + am2x2 + · · ·+ am2xn = bm.

The aij ’s and the bi’s are given; the goal is to check whether or not there are values for the xj ’s
such that all m constraints are satisfied. We used Gaussian elimination; “solved” meant that the
algorithm returns a feasible solution, or correctly reports that no feasible solution exists.

Linear programming is coming up with the “best” solution when instead of equations, we have
inequalities.



Ingredients of a Linear Program

Using the language of linear programming, we can express many of the computational problems
that we know.

Ingredients of a Linear Program

a. Decision variables x1, . . . , xn ∈ R.

b. Linear constraints, each of the form

n∑
j=1

ajxj (∗) bi,

where (∗) could be ≤,≥, or =.

c. A linear objective function of the form

max
n∑

j=1

cjxj

or

min
n∑

j=1

cjxj .

Comments:

• The aij ’s, bi’s, and cj ’s are constants, part of the input.

• The xj ’s are variables, what the algorithm is trying to set.

• When specifying constraints, there is no need to make use of both “≤” and “≥”inequalities—
one can be transformed into the other just by multiplying all the coefficients by −1 (the aij ’s
and bi’s are allowed to be positive or negative).

• Equality constraints can be turned into two inequalities.

• min and max can easily be converted from one to another.

What’s not allowed in a linear program? Non-linear variables—terms like x2j , xjxk, log(1 + xj),
etc. So whenever a decision variable appears in an expression, it is alone, possibly multiplied by a
constant (and then summed with other such terms).

A Simple Example

To make linear programs more concrete and develop your geometric intuition about them, let’s
look at a toy example. (Many “real” examples of linear programs are coming shortly.) Suppose



Figure 1: A toy example of a linear program.

there are two decision variables x1 and x2—so we can visualize solutions as points (x1, x2) in the
plane. See Figure 1. Let’s consider the (linear) objective function of maximizing the sum of the
decision variables:

maxx1 + x2.

We’ll look at four (linear) constraints:

x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.

The feasible region is shaded in Figure 1. Geometrically, the objective function asks for the
feasible point furthest “northeast” in the direction of the coefficient vector (1, 1). Eyeballing, this
point is (13 ,

1
3), for an optimal objective function value of 2

3 .

Geometric Intuition

In higher dimensions, a linear constraint in n dimensions corresponds to a halfspace in Rn. Thus
a feasible region is an intersection of halfspaces, the higher-dimensional analog of a polygon.1

When there is a unique optimal solution, it is a vertex (i.e., “corner”) of the feasible region.

Edge cases occur when the feasible region is unbounded, empty, or the objective function is un-
bounded.

1A finite intersection of halfspaces is also called a “polyhedron;” in the common special case where the feasible
region is bounded, it is called a “polytope.”



A Case Study: Maximum-Weight Matching

The Maximum-Weight Matching Problem

Given a graph G = (V,E) choose a maximum weight matching—a set of edges S with maximum
weight such that no vertex is covered by more than one edge.

a. Decision variables: What are we try to solve for?

b. Constraints:

c. Objective function:

Maximum-Weight Matching as an Integer Program

Maximum-Weight Matching as a Linear Program



Writing Problems as Linear Programs

Example 1: Grain Nutrients

Suppose BU has hired you to optimize nutrition for campus dining. There are two possible grains
they can offer, grain 1 and grain 2, and each contains the macronutrients found in the table below,
plus cost per kg for each of the grains.

Macros Starch Proteins Vitamins Cost ($/kg)

Grain 1 5 4 2 0.6

Grain 2 7 2 1 0.35

The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3 respectively.
Determine how much of each grain to buy such that BU spends as little but meets its nutrition
requirements.

Decision variables:

Objective:

Constraints:

Example 2: Transportation

You’re working for a company that’s producing widgets among two different factories and selling
them from three different centers. Each month, widgets need to be transported from the factories
to the centers. Below are the transportation costs from each factory to each center, along with the
monthly supply and demand for each factory and center respectively. Determine how to route the
widgets in a way that minimizes transportation costs.



Transit Cost Center 1 Center 2 Center 3

Factory 1 5 5 3

Factory 2 6 4 1

• The supply per factory is 6 and 9 respectively.

• The demand per center is 8, 5, and 2 respectively.

Decision variables:

Objective:

Constraints:

Converting to Normal Form

The “Normal Form” of a Linear Program looks like:

max cTx

subject to Ax ≤ b

Exercise: Convert the Transportation LP to normal form.

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal.
There are a bunch of amazing properties that come from LP duality.



Going back to our nutrition example, we want to find the dual linear program. A maximiza-
tion problem’s dual is a minimization problem. Here, we have a minimization problem, so the dual
will be a maximization problem.

To take the dual: Label each primal constraint with a new dual variable. In our new linear
program, each dual constraint will correspond to a primal variable. For the left-hand side, count
up the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints
and multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1)
in constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See below).

Primal:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch)

4y1 + 2y2 ≥ 15 (proteins)

2y1 + 1y2 ≥ 3 (vitamins)

y1, y2 ≥ 0 (non-negativity)

Dual:

Sometimes, the dual can even be interpreted as a related problem.

The following is the normal form for a maximization problem primal and its dual:

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

x ≥ 0 y ≥ 0

For the above example:

A = b = c =



Example 3: Unweighted Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

What problem is this?

Weak Duality

Theorem 1. If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.


