
DS 574 Algorithmic Mechanism Design Lecture #9
Fall 2022 Prof. Kira Goldner

Introduction to Linear Programming and Duality

Why Linear Programming rocks:

• Incredibly general: Every problem we’ve seen so far can be formulated as a linear program.

• Computational tractable

– In theory: Can be solved in polynomial time

– In practice: Fast with input sizes up into the millions!

• Contains many properties that can be turned into useful algorithmic paradigms and analysis:

– Duality:

∗ Solve an easier equivalent problem.

∗ How do we know when we’re done?

– Complementary Slackness and Strong Duality: something is optimal!

How to Think About Linear Programming

Comparison to Systems of Linear Equations

Think back to linear systems of equations. Such a system consists of m linear equations in real-
valued variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a12xn = b1

a21x1 + a22x2 + · · ·+ a22xn = b2
...

am1x1 + am2x2 + · · ·+ am2xn = bm.

The aij ’s and the bi’s are given; the goal is to check whether or not there are values for the xj ’s
such that all m constraints are satisfied. We used Gaussian elimination; “solved” meant that the
algorithm returns a feasible solution, or correctly reports that no feasible solution exists.

What about inequalities? The point of linear programming is to solve systems of linear equations
and inequalities. Moreover, when there are multiple feasible solutions, we would like to compute
the “best” one.



Ingredients of a Linear Program

Using the language of linear programming, we can express many of the computational problems
that we know.

Ingredients of a Linear Program

a. Decision variables x1, . . . , xn ∈ R.

b. Linear constraints, each of the form

n∑
j=1

ajxj (∗) bi,

where (∗) could be ≤,≥, or =.

c. A linear objective function of the form

max
n∑

j=1

cjxj

or

min
n∑

j=1

cjxj .

• The aij ’s, bi’s, and cj ’s are constants, part of the input.

• The xj ’s are variables, what the algorithm is trying to set.

• When specifying constraints, there is no need to make use of both “≤” and “≥”inequalities—
one can be transformed into the other just by multiplying all the coefficients by −1 (the aij ’s
and bi’s are allowed to be positive or negative).

• Equality constraints can be turned into two inequalities.

• min and max can easily be converted from one to another by multiplying by −1.

What’s not allowed in a linear program? Non-linear variables—terms like x2j , xjxk, log(1 + xj),
etc. So whenever a decision variable appears in an expression, it is alone, possibly multiplied by a
constant (and then summed with other such terms).

A Simple Example

To make linear programs more concrete and develop your geometric intuition about them, let’s
look at a toy example. (Many “real” examples of linear programs are coming shortly.) Suppose
there are two decision variables x1 and x2—so we can visualize solutions as points (x1, x2) in the



Figure 1: A toy example of a linear program.

plane. See Figure 1. Let’s consider the (linear) objective function of maximizing the sum of the
decision variables:

maxx1 + x2.

We’ll look at four (linear) constraints:

x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.

The feasible region is shaded in Figure . Geometrically, the objective function asks for the
feasible point furthest “northeast” in the direction of the coefficient vector (1, 1). Eyeballing, this
point is (13 ,

1
3), for an optimal objective function value of 2

3 .

Geometric Intuition

While it’s always dangerous to extrapolate from two or three dimensions to an arbitrary number,
the geometric intuition above remains valid for general linear programs, with an arbitrary number
of dimensions (i.e., decision variables) and constraints. Even though we can’t draw pictures when
there are many dimensions, the relevant algebra carries over without any difficulties. Specifically:

a. A linear constraint in n dimensions corresponds to a halfspace in Rn. Thus a feasible region
is an intersection of halfspaces, the higher-dimensional analog of a polygon.1

b. When there is a unique optimal solution, it is a vertex (i.e., “corner”) of the feasible region.

A few edge cases:

1A finite intersection of halfspaces is also called a “polyhedron;” in the common special case where the feasible
region is bounded, it is called a “polytope.”



a. There might be no feasible solutions at all. For example, if we add the constraint x1 +x2 ≥ 1
to our toy example, then there are no longer any feasible solutions. Linear programming
algorithms correctly detect when this case occurs.

b. The optimal objective function value is unbounded (+∞ for a maximization problem, −∞ for
a minimization problem). Note a necessary but not sufficient condition for this case is that
the feasible region is unbounded. For example, if we dropped the constraints 2x1 + x2 ≤ 1
and x1 + 2x2 ≤ 1 from our toy example, then it would have unbounded objective function
value. Again, linear programming algorithms correctly detect when this case occurs.

c. The optimal solution need not be unique, as a “side” of the feasible region might be parallel
to the levels sets of the objective function. Whenever the feasible region is bounded, however,
there always exists an optimal solution that is a vertex of the feasible region.2

A Case Study: Maximum-Weight Bipartite Matching

The Maximum-Weight Matching Problem

Given a graph G = (V,E) choose a maximum weight matching—a set of edges S with maximum
weight such that no vertex is covered by more than one edge.

a. Decision variables: What are we try to solve for? A set of edges S that is our matching. So
our variables are xe for each edge e, where we want xe = 1 if e is in our matching S and 0
otherwise.

b. Constraints: We cannot put more than 1 edge that is incident to a vertex into our matching,
so ∑

e:v∈e
xe ≤ 1 ∀v

and similarly, we can never take a negative quantity of an edge, so

xe ≥ 0 ∀e ∈ E.

c. Objective function: We want to maximize the weight of our matching:

max
∑
e∈E

xewe

Note that this is again a linear function.

2There are some annoying edge cases for unbounded feasible regions, for example the linear program max(x1 +x2)
subject to x1 + x2 = 1.



Maximum-Weight Matching as an Integer Program

max
∑
e∈E

xewe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once)

xe ∈ {0, 1} ∀e (integral)

Maximum-Weight Matching as a Linear Program

max
∑
e∈E

xewe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once)

xe ≥ 0 ∀e (non-negativity)

Writing Problems as Linear Programs

Example 1: Grain Nutrients

Suppose BU has hired you to optimize nutrition for campus dining. There are two possible grains
they can offer, grain 1 and grain 2, and each contains the macronutrients found in the table below,
plus cost per kg for each of the grains.

Macros Starch Proteins Vitamins Cost ($/kg)

Grain 1 5 4 2 0.6

Grain 2 7 2 1 0.35

The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3 respectively.
Determine how much of each grain to buy such that BU spends as little but meets its nutrition
requirements.

Decision variables: amount of grain 1 (y1) and grain 2 (y2).

Objective: Minimize cost.
min 0.6y1 + 0.35y2

Constraints:

5y1 + 7y2 ≥ 8 (starch)

4y1 + 2y2 ≥ 15 (proteins)

2y1 + 1y2 ≥ 3 (vitamins)

y1, y2 ≥ 0 (non-negativity)



Example 2: Transportation

You’re working for a company that’s producing widgets among two different factories and selling
them from three different centers. Each month, widgets need to be transported from the factories
to the centers. Below are the transportation costs from each factory to each center, along with the
monthly supply and demand for each factory and center respectively. Determine how to route the
widgets in a way that minimizes transportation costs.

Transit Cost Center 1 Center 2 Center 3

Factory 1 5 5 3

Factory 2 6 4 1

• The supply per factory is 6 and 9 respectively.

• The demand per center is 8, 5, and 2 respectively.

Decision variables: xij is the number of widgets transported from factory i to center j.

Objective: Minimize cost.

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

Constraints:

x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)

Converting to Normal Form

The “Normal Form” of a Linear Program looks like:

max cTx

subject to Ax ≤ b

Our Transportation problem had the LP:

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

subject to x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)



How can we convert it to normal form—a maximization problem with all less-than-or-equal-to con-
straints?

First observe that x11 + x12 + x13 = 6 is equivalent to having both inequalities

x11 + x12 + x13 ≤ 6 and x11 + x12 + x13 ≥ 6.

But, we need both to be ≤ inequalities! We transform them to

x11 + x12 + x13 ≤ 6 and − x11 − x12 − x13 ≤ −6.

The resulting LP in normal form is:

max −5x11 − 5x12 − 3x13 − 6x21 − 4x22 − 1x23

subject to x11 + x12 + x13 ≤ 6 (Factor 1 supply)

−x11 − x12 − x13 ≤ −6 (Factor 1 supply)

x21 + x22 + x23 ≤ 9 (Factor 2 supply)

−x21 − x22 − x23 ≤ −9 (Factor 2 supply)

x11 + x21 ≤ 8 (Center 1 demand)

−x11 − x21 ≤ −8 (Center 1 demand)

x12 + x22 ≤ 5 (Center 2 demand)

−x12 − x22 ≤ −5 (Center 2 demand)

x13 + x23 ≤ 2 (Center 3 demand)

−x13 − x23 ≤ −2 (Center 3 demand)

xij ≥ 0 (non-negativity)

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal.
There are a bunch of amazing properties that come from LP duality.

Going back to our nutrition example, we want to find the dual linear program. A maximization
problem’s dual is a minimization problem. Here, we have a minimization problem, so the dual will
be a maximization problem.

To take the dual: Label each primal constraint with a new dual variable. In our new linear
program, each dual constraint will correspond to a primal variable. For the left-hand side, count
up the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints
and multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1)
in constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See below).



Primal:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch) (x1)

4y1 + 2y2 ≥ 15 (proteins) (x2)

2y1 + 1y2 ≥ 3 (vitamins) (x3)

y1, y2 ≥ 0 (non-negativity)

Dual:

max 8x1 + 15x2 + 3x3

subject to 5x1 + 4x2 + 2x3 ≤ 0.6 (grain 1) (y1)

7x1 + 2x2 + 1x3 ≤ 0.35 (grain 2) (y2)

x1, x2, x3 ≥ 0 (non-negativity)

Sometimes, the dual can even be interpreted as a related problem, as we will see.

The following is the normal form for a maximization problem primal and its dual:

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

x ≥ 0 y ≥ 0

For the above example:

A =

[
5 4 2
7 2 1

]
b =

[
0.6
0.35

]
c =

 8
15
3


Example 3: Unweighted Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:



min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!

Weak Duality

Theorem 1 (Weak Duality). If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.

cTx
1
≤ (ATy)x = yTAx

2
≤ yTb = bTy.

Where (1) follows by the dual constraints ATy ≥ c and (2) follows by the primal constraints
Ax ≤ b.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution
to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum
matching can be, and likewise, fractional maximum matching gives a lower bound on how small
the minimum (fractional) vertex cover can be.


