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Mechanism Design Basics

Definition 1. Each bidder i has a private valuation vi that is its maximum willingness-to-pay for
the item being sold.

Our default assumption is that a bidder’s utility is modeled by “quasilinear utility.”

Definition 2. For a deterministic mechanism with at most one winner, a bidder with quasilinear
utility has utility

ui(·) =

{
vi − pi if i wins and pays pi

0 otherwise.

Definition 3. A dominant strategy is a strategy (bid) that is guaranteed to maximize a bidder’s
utility no matter what the other bidders do.

Sealed-Bid Auctions:

(1) Each bidder i privately communicates a bid bi to the auctioneer—in a sealed envelope, if you
like.

(2) The auctioneer decides who gets the item (if anyone).

(3) The auctioneer decides on a selling price.

How should we do (2) and (3)?

What we’ll do for (2):

What about (3)? Some potential auctions:

•

•

•



How should we bid in these auctions?

Claim 1 (Dominant-Strategy Incentive Compatibility). In a second-price auction, every bidder
has a dominant strategy : set its bid bi equal to its private valuation vi. That is, this strategy
maximizes the utility of bidder i, no matter what the other bidders do.

Proof. [Hint: Consider two cases of outcomes.]

Claim 2 (Individual Rationality). In a second-price auction, every truth-telling bidder is guaran-
teed non-negative utility.

Proof.



Theorem 1 (Vickrey). The Vickrey (second-price) auction satisfies the following three quite dif-
ferent and desirable properties:

(1) [strong incentive guarantees] It is dominant-strategy incentive-compatible (DSIC) and
individually rational (IR), i.e., Claims 1 and 2 hold.

(2) [strong performance guarantees] If bidders report truthfully, then the auction maximizes
the social surplus

n∑
i=1

vixi,

where xi is 1 if i wins and 0 if i loses, subject to the obvious feasibility constraint that∑n
i=1 xi ≤ 1 (i.e., there is only one item).

(3) [computational efficiency] The auction can be implemented in polynomial time.

In general, as we design mechanisms, we’ll take the following design approach:

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we assign bidders
to slots so that properties (2) strong performance guarantees and (3) computational efficiency
hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that property (1) strong
incentive guarantees holds?

Allocation and Payment Rules

Now, we formalize the concepts we’ve been using so far. A mechanism M = (x,p) is completely
determined by its allocation rule x and payment rule p.

Definition 4. An allocation rule x is a (potentially randomized) mapping from bidder actions
(bids b) to feasible outcomes in X.

In the single-item setting, what is the set of feasible outcomes X? We say x ∈ X where x =
(x1, . . . , xn) and xi denotes how much of the item bidder i gets.

• At most 1 item is allocated:
∑n

i=1 xi ≤ 1.

• A bidder is either allocated or isn’t: xi ∈ {0, 1} ∀i.



What does this mean for a potentially randomized allocation rule x(b)?

Definition 5. A payment rule p(b) ∈ Rn is a mapping from bidder actions (bids b) to (non-
negative) real numbers where pi(b) is the amount that bidder i pays in the outcome x(b).

Now we can formalize quasilinear utility in terms of general allocation and payment rules.

Definition 6. For a mechanism M = (x,p), a bidder with quasilinear utility has utility

ui(b) = vi · xi(b)− pi(b).

We’ll narrow our attention to payment rules that satisfy

pi(b) ∈ [0, bi · xi(b)]

for every i and b. The constraint that pi(b) ≥ 0 is equivalent to prohibiting the seller from paying
the bidders. The constraint that pi(b) ≤ bi · xi(b) ensures that a truth-telling bidder receives
nonnegative utility (do you see why?).

Again, our goal is to design DSIC mechanisms:

Definition 7. A mechanism is dominant-strategy incentive-compatible (DSIC) if it is a bidder’s
dominant strategy to bid their true value, i.e. it maximizes their utility, no matter what the other
bidders do. That is,

ui(vi,b−i) ≥ ui(z,b−i) ∀z,b−i.

Myerson’s Lemma

We now come to two important definitions. Both articulate a property of allocation rules.

Definition 8 (Implementable Allocation Rule). An allocation rule x is implementable if there is a
payment rule p such the sealed-bid auction (x,p) is DSIC.

Definition 9 (Monotone Allocation Rule). An allocation rule x for a single-parameter environment
is monotone if for every bidder i and bids b−i by the other bidders, the allocation xi(z,b−i) to i
is nondecreasing in its bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stuff.

Give an example of a monotone allocation rule:

Give an example of a non-monotone allocation rule:



We state Myerson’s Lemma in three parts; each is conceptually interesting and will be useful in
later applications.

Theorem 2 (Myerson’s Lemma [1]). Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mechanism
(x,p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].

(c) The payment rule in (b) is given by an explicit formula (see (4), below).

Myerson’s Lemma is the foundation on which we’ll build most of our mechanism design
theory. Let’s review what it is saying.

Part (a): Finding an allocation rule that can be made DSIC (is implementable, Definition 8) seems con-
fusing, but is actually equivalent to and just as easy as checking if the allocation is monotone
(Definition 9).

Part (b): If an allocation rule is implementable (can be made to be DSIC), then there’s no ambiguity
in what the payment rule should be.

Part (c): There’s a simple and explicit formula for this!

Proof of Myerson’s Lemma (Theorem 2). As shorthand, write x(z) and p(z) for the allocation
xi(z,b−i) and payment pi(z,b−i) of i when it bids z, respectively.

Suppose (x,p) is DSIC, and consider any 0 ≤ y < z. Because bidder i might well have private
valuation z and can submit the false bid y if it wants, DSIC demands that

︸ ︷︷ ︸
utility of bidding z given value z

≥ ︸ ︷︷ ︸
utility of bidding y given value z

(1)

Similarly, since bidder i might well have the private valuation y and could submit the false bid
z, (x,p) must satisfy

︸ ︷︷ ︸
utility of bidding y given value y

≥ ︸ ︷︷ ︸
utility of bidding z given value y

(2)

Rearranging inequalities (1) and (2) yields the following sandwich, bounding p(y) − p(z) from
below and above:

y · [x(z)− x(y)] ≤ p(z)− p(y) ≤ z · [x(z)− x(y)] (3)

From here, we can conclude:



• x must be monotone.

• p′(z) = z · x′(z).

Why?
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