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Mechanism Design Basics

A mechanism is defined by an allocation rule that takes as input the bids (or reports, or actions)
of the bidders (or players, agents, buyers) and determines an outcome. It is often accompanied by
a payment rule. First, we’ll focus on the bidders, and why they are choosing the actions they are
choosing.

Definition 1. Each bidder i has a private valuation vi that is its maximum willingness-to-pay for
the item being sold.

Our default assumption is that a bidder’s utility is modeled by quasilinear utility.

Definition 2. For a deterministic mechanism with at most one winner, a bidder with quasilinear
utility has utility

ui(·) =

{
vi − pi if i wins and pays pi

0 otherwise.

Definition 3. A dominant strategy is a strategy (bid) that is guaranteed to maximize a bidder’s
utility no matter what the other bidders do.

Sealed-Bid Auctions:

(1) Each bidder i privately communicates a bid bi to the auctioneer—in a sealed envelope, if you
like.

(2) The auctioneer decides who gets the item (if anyone).

(3) The auctioneer decides on a selling price.

How should we do (2) and (3)? For now, (2) will just be giving the item to the highest bidder.
What about (3)?

Some potential auctions:

• First-price auction: the price is equal to the highest bid.

• Second-price auction: the price is equal to the second-highest bid.

• All-pay auction: every bidder (not just the winning bidder) pays their bid.*

*Note that we need to amend our definition of quaslinear utility already for the all-pay
auction, since we only defined payments in terms of when the bidder wins. For now, we can
modify it to

ui(·) = vi · 1[i wins]− pi

where pi is i’s assigned payment. In the next class, we’ll further modify it.



How should we bid in these auctions? It’s not necessarily clear in first-price or all-pay, but it is
clear in the second-price auction with a bit of reasoning: just bid your true value!

Claim 1 (Dominant-Strategy Incentive Compatibility). In a second-price auction, every bidder
has a dominant strategy : set its bid bi equal to its private valuation vi. That is, this strategy
maximizes the utility of bidder i, no matter what the other bidders do.

[Hint: Consider two cases of outcomes.]

This claim implies that second-price auctions are particularly easy to participate in—you don’t
need to reason about the other bidders in any way (how many there are, what their valuations,
whether or not they bid truthfully, etc.) to figure out how you should bid. Note this is completely
different from a first-price auction. You should never bid your valuation in a first-price auction
(that would guarantee zero utility), and the ideal amount to underbid depends on the bids of the
other players

Proof. Fix an arbitrary player i, its valuation vi, and the bids b−i of the other players. (Here b−i
means the vector b of all bids, but with the ith component deleted. It’s wonky notation but you
need to get used to it.) We need to show that bidder i’s utility is maximized by setting bi = vi.
(Recall vi is i’s fixed valuation, while it can set its bid bi to whatever it wants.)

Let B = maxj 6=i bj denote the highest bid by some other bidder. What’s special about a
second-price auction is that, even though there are an infinite number of bids that i could make,
only distinct outcomes can result. If bi < B, then i loses and receives utility 0. If bi ≥ B, then i
wins at price B and receives utility vi −B.

We now consider two cases. First, if vi < B, the highest utility that bidder i can get is
max{0, vi −B} = 0, and it achieves this by bidding truthfully (and losing). Second, if vi ≥ B, the
highest utility that bidder i can get is max{0, vi − B} = vi − B, and it achieves this by bidding
truthfully (and winning).

Claim 2 (Individual Rationality). In a second-price auction, every truth-telling bidder is guaran-
teed non-negative utility.

Proof. Losers all get utility 0. If bidder i is the winner, then its utility is vi − p, where p is the
second-highest bid. Since i is winner (and hence the highest bidder) and bid its true valuation,
p ≤ vi and hence vi − p ≥ 0.

Theorem 1 (Vickrey). The Vickrey (second-price) auction satisfies the following three quite dif-
ferent and desirable properties:

(1) [strong incentive guarantees] It is dominant-strategy incentive-compatible (DSIC) and
individually rational (IR), i.e., Claims 1 and 2 hold.

(2) [strong performance guarantees] If bidders report truthfully, then the auction maximizes
the social surplus

n∑
i=1

vixi,

where xi is 1 if i wins and 0 if i loses, subject to the obvious feasibility constraint that∑n
i=1 xi ≤ 1 (i.e., there is only one item).



(3) [computational efficiency] The auction can be implemented in polynomial (indeed, linear)
time.

In general, as we design mechanisms, we’ll take the following design approach:

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we assign bidders
to slots so that properties (2) strong performance guarantees and (3) computational efficiency
hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that property (1) strong
incentive guarantees holds?
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