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Kidney Exchange

• There are more than 92,000 on the waitlist for a kidney transplant in the US; this
makes up 87% of the organ transplant list [1].

• Healthy people have two kidneys and can survive fine with only one.

• A donor and recipient must be “compatible” (blood and tissue types).

• Two incompatible patient-donor pairs can agree to a kidney exchange. This is legal.
(Compensation for kidneys is not, except in Iran.)

Figure 1: A kidney exchange.

Question: How would one design a centralized mechanism for kidney exchange, where
incompatible patient-donor pairs can register and be matched with others?

Idea #1: Use the Top Trading Cycle Algorithm

Vanilla Top Trading Cycles

Consider the housing allocation problem defined by Shapley and Scarf [6]: There are n
agents, and each initially owns one house. Each agent has a total ordering over the n houses,
and need not prefer their own over the others. How can we reallocate the houses to make
the agents better off?

The Top Trading Cycle Algorithm [Gale [6]].

While agents remain:



• Each remaining agent points to its favorite remaining house. This induces a directed
graph G on the remaining agents in which every vertex has out-degree 1 (Figure 1).

• The graph G has at least one directed cycle. Self-loops count as directed cycles.

• Reallocate as suggested by the directed cycles, with each agent on a directed cycle C
giving its house to the agent that points to it, that is, to its predecessor on C.

• Delete the agents and the houses that were reallocated in the previous step.

Figure 2: An iteration of the Top Trading Cycle Algorithm (TTCA) with two directed cycles.

Observations:

• This terminates with each agent possessing exactly one house.

• Every agent is only made better off by the algorithm.

• There is no incentive for agents to misreport their preferences. (Requires proof!)

Theorem 1. The TTCA induces a DSIC mechanism.

[Hint: Divide agents into those allocated to in the jth iteration.]

They key claim is as follows: Let Nj denote the agents allocated in the jth iteration of
the TTCA when all agents report truthfully. Agents in Nj are never pointed to by agents
of N1 ∪ · · · ∪Nj−1 before the jth iteration, and no misreport by Nj can cause this.

Proof. Let Nj denote the agents allocated in the jth iteration of the TTCA when all agents
report truthfully. Each agent of N1 gets its first choice and hence has no incentive to
misreport. An agent i of N2 is not pointed to by any agent of N1 in the first iteration—
otherwise, i would belong to N1 rather than N2. Thus, no misreport by i nets a house
originally owned by an agent in N1. Since i gets its first choice outside of the houses owned
by N1, it has no incentive to misreport. In general, an agent i of Nj is never pointed to in
the first j − 1 iterations of the TTCA by any agents in N1 ∪ · · · ∪Nj−1. Thus, whatever it
reports, i will not receive a house owned by an agent in N1 ∪ · · · ∪ Nj−1. Since the TTCA
gives i its favorite house outside this set, it has no incentive to misreport.



Now we notice a nice property of the TTCA even stronger than our typical “best response”
dynamics.

Definition 1. A core allocation is an allocation such that no coalition of agents can make
all of its members better off via internal reallocations.

Theorem 2. For every house allocation problem, the allocation computed by the TTCA is
the unique core allocation.

Proof. To prove the computed allocation is a core allocation, consider an arbitrary subset
S of agents. Define Nj as in the proof of Theorem 3.1. Let ` be the first iteration in which
N` ∩ S 6= ∅, with agent i ∈ S receiving its house in the `th iteration of TTCA. TTCA
gives agent i its favorite house outside of those owned by N1, . . . , N`−1. Since no agents of
S belong to N1, . . . , N`−1, no reallocation of houses among agents of S can make i strictly
better off.

We now prove uniqueness. In the TTCA allocation, all agents of N1 receive their first
choice. This must equally be true in any core allocation—in an allocation without this
property, the agents of N1 that didn’t get their first choice form a coalition for which internal
reallocation can make everyone strictly better off. Similarly, in the TTCA allocation, all
agents of N2 receive their first choice outside of N1. Given that every core allocation agrees
with the TTCA allocation for the agents of N1, such allocations must also agree for the
agents of N2—otherwise, the agents of N2 that fail to get their first choice outside N1 can
all improve via an internal reallocation. Continuing inductively, we find that the TTCA
allocation is the unique core allocation.

Modifications for Kidney Exchange

The first attempt was via the TTCA by Roth, Sönmez, and Ünver [3] before the authors
talked extensively to doctors. People’s “preferences” over kidneys would just be via decreas-
ing probability of success of the transplant.

But kidney exchange is more complicated:

(1) There are patients without living donors, and deceased donors.

(2) The cycles along which reallocations are made can be arbitrarily long.

(3) Modeling preferences as a total ordering over the set of living donors is overkill: em-
pirically, patients don’t really care which kidney they get as long as it is compatible
with them.

Instead: Binary preferences.



Idea #2: Use a Matching Algorithm

(2) Short reallocation cycles and (3) binary preferences motivate looking for matchings, as
done in [4].

What’s the relevant graph for kidney exchange? Describe the vertices, edges, and what
a matching would look like.

The vertex set V corresponds to incompatible patient-donor pairs (one vertex per pair),
and we have an undirected edge between compatible exchanges: vertices (P1, D1) and (P2,
D2) such that P1 and D2 are compatible and P2 and D1 are compatible. We define the
optimal solutions to be the matchings of this graph that have maximum cardinality— that
is, we want to arrange as many compatible kidney transplants as possible. By restricting
the feasible set to matchings of this graph, we are restricting to pairwise kidney exchanges,
and hence “only” 4 simultaneous surgeries.1

How do incentives work here? What should the mechanism look like?

Our model for agents is that each vertex i has a true set Ei of incident edges, and can
report any subset Fi ⊆ Ei to a mechanism. In practice, proposed kidney exchanges can
be refused by a patient for any reason, so one way to implement a misreport is to refuse
exchanges in EirFi. All that a patient cares about is being matched to a compatible donor.
Our mechanism design goal is to compute an optimal solution (i.e., a maximum-cardinality
matching) and to be DSIC, meaning that for every agent, reporting its full edge set is a
dominant strategy.

Our mechanism takes the following form.

(1) Collect a reported set of incident edges Fi from each agent i.

(2) Form the edge set E = {(i, j) : (i, j) ∈ Fi ∩Fj}. That is, include edge (i, j) if and only
if both endpoints agree to the exchange.

(3) Return a maximum-cardinality matching of the graph G = (V,E), where V is the
(known) set of patient-donor pairs.

But how do we tie-break between maximum-cardinality matchings?

• Different edges for the same vertices: doesn’t matter.

1These days, 3-way exchanges, corresponding to a directed cycle of 3 patient-donor pairs (with D2 compat-
ible with P1, D3 with P2, and D1 with P3), are increasingly common. The reason is that 3-way exchanges
are still logistically feasible and allowing them significantly increases the number of patients that can be
saved. Empirically, exchanges involving 4 or more pairs don’t really help match more patients, so they are
not typically done.



• Different vertices?

Solution: Priority list over patients. In practice, patients are ordered according to some
priority, so we can assume that the vertices 1, 2, . . . , n are ordered from highest to lowest
priority.2 Then, we implement step (3) as follows:

(3a) Let M0 denote the set of maximum matchings of G.

(3b) For i = 1, 2, . . . , n:

(3b.i) Let Zi denote the matchings in Mi−1 that match vertex i.

(3b.ii) If Zi 6= ∅, set Mi = Zi.

(3b.iii) Otherwise, set Mi = Mi−1.

(3c) Return an arbitrary matching of Mn.

That is, in each iteration i, we ask if there is a maximum matching that respects previous
commitments and also matches vertex i. If so, then we additionally commit to matching i in
the final matching. If previous commitments preclude matching i in a maximum-cardinality
matching, then we skip i and move on to the next vertex. By induction on i, Mi is a
nonempty subset of the maximum matchings of G. Every matching of Mn matches the same
set of vertices—the vertices i for which Zi was non-empty—so the choice of matching in step
(3c) is irrelevant.

Theorem 3. For every collection {Ei}ni=1 of edge sets and every ordering of the vertices, the
priority matching mechanism above is DSIC: no agent can go from unmatched to matched
by reporting a strict subset Fi of Ei rather than Ei.

Hospital Incentives

Current research is focused on incentive problems at the hospital level, rather than at the
level of individual patient-donor pairs. Hospitals are the ones who actually report the pairs
to the national kidney exchange, but the objectives of a hospital (to match as many of its
patients as possible) and of society (to match as many patients overall as possible) are not
perfectly aligned.

The Need for Full Reporting. Only reporting pairs who the hospital can’t match in-
ternally can result in fewer exchanges.

2The priority of a patient on a waiting list is determined by numerous factors, such as the length of time
it has been waiting on the list, the difficulty of finding a compatible kidney, etc.



Figure 3: Full reporting by hospitals leads to more matches than with only internal matches.

Hiding patients. If H1 hides patients 2 and 3 from the exchange (while H2 reports truth-
fully), then H1 guarantees that all of its patients are matched. The unique maximum match-
ing in the report graph matches patient 6 with 7 (and 4 with 5), and H1 can match 2 and
3 internally. On the other hand, if H2 hides patients 5 and 6 while H1 reports truthfully,
then all of H2’s patients are matched. In this case, the unique maximum matching in the
graph of report matches patient 1 with 2 and 4 with 3, while H2 can match patients 5 and
6 internally.

Figure 4: Hospitals can have an incentive to hide patient-donor pairs.

It turns out there cannot be a DSIC mechanism that always computes a maximum-cardinality
matching in the full graph.

In light of this example, the revised goal should be to compute an approximately maximum-
cardinality matching so that, for each participating hospital, the number of its patients that
get matched is approximately as large as in any matching, maximum-cardinality or other-
wise. Understanding the extent to which this is possible, in both theory and practice, is an
active research topic [2, 7].
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