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Gains from Trade in Two-Sided Markets

Today we study a new setting, the two-sided market setting, and a new objective, gains from
trade.

Definition 1. In two-sided markets, we have n buyers and m sellers, and a platform facili-
tating trade. Each seller owns some item(s) and has private values for them s; and will not
sell below these values. Each buyer has private values for item(s) b; and will not buy above
these values.

Let’s simplify significantly for now and focus on the simplest possible setting: one buyer
and one seller for one item. This setting is called bilateral trade.

Definition 2. In the bilateral trade setting, there is one seller with one item for sale, and
item s ~ Fg for their own item. There is also one buyer with item b ~ F’z for the item. The

platform’s job is to determine a price for the buyer to pay, p”, and a payment to the seller
5

p°.
We need to review our standard concepts in this new setting and make sure that we
understand them, and see if anything additional is necessary.

Utility. If trade occurs at these prices, the buyer and seller respectively get utility

b—pP and p° —s.

If trade does not occur, the buyer and seller respectively get utility 0 each.

Budget Balance. Since the mechanism designer is the platform here, facilitating trade
between the platform, it’s natural to ask that the designer shouldn’t have to put in any money
to make the mechanism work (just like the designer doesn’t have to pay any money in VCG).
That is, we ask that the payment of the buyer covers the payment to the seller: p® > p°.
We call this weak budget balance because it is only an inequality. Sometimes, mechanisms
ask for strong budget balance—that the platform does not take any money off the table. Or,
we relax these conditions to be in expectation over randomness of the mechanism or of the
draw of values.

Many Single-Dimensional Buyers and Sellers. Now, we consider the setting with m
identical sellers, each seller j with one item and one value s; ~ Fg for their item. There are
n buyers, each with a value b; for any item, where b; ~ Fz. And we are in the i.i.d. case, so
FB - Fs.



Welfare. The welfare is just the sum of the values of those who hold the items. That is,
if seller j did not trade their item, we count their value for the item, s;, as they are holding
the item. If they did trade their item, we instead count the value of the buyer they traded
it to. We could write this a few different ways.

Zbi - 1[i has item | + ij - 1]y has item |
i J
or, if M is the matching of buyers and sellers that trade, then
Z s; + Z b; — sj.
J (4,5)eM

Observe that ) ; 8j 1s the pre-trade welfare—the welfare before trade occurs.

Gains from Trade. In contrast, the Gains from Trade (GFT) measures exactly the (ag-
gregate) value that the platform adds from the actual trade. While the platform can still
get > ;S in welfare without making a single trade, the platform is not serving a purpose in
this case. If M is again the matching of buyers and sellers that actually trade, then

GFT = Z bl - S5
(i,5)eM
We put these notions together to observe that
WELFARE = GFT + Z 5
J

where the pre-trade welfare (the sum of the sellers’ values) is independent of the mechanism.
Then for any mechanism we design, we notice that approximating GFT will approximate
welfare, but approximating welfare will not approximate GFT, so GF'T is a harder objective.

OPT vs. Constrained-OPT. Our goal is to maximize GFT, and we would like the
mechanism that does so to be

1. Dominant-Strategy Incentive-Compatible
2. Ex-Post Individually Rational

3. Weakly Budget-Balanced

In economics, they call the allocation that is the solution to the unconstrained optimization
problem of maximizing GFT “first-best.” They call the mechanism that is the solution to
the constrained optimization problem of maximizing GFT subject to (1-3) “second-best.”

Theorem 1 (Myerson Satterthwaite [3]). Even for 1 buyer, 1 seller, and 1 item, the alloca-
tion that mazimizes GFT (and thus welfare) may not be implementable by any mechanism
satisfying (1-3). That is, first-best is not always attainable.



The Optimal (First-Best) Allocation. Sort buyer values in decreasing order, seller
values in decreasing order, and match them off while buyer values exceed seller values.
The sum is independent of specific matchings, and adding any other pairs here would add
something negative to the sum, so we do not want to add any of the other agents into the
trade.

e We let ¢ denote the number of trades that occur in the optimal allocation.

e Let orpT(n,m) denote the GFT from the optimal allocation (which is not necessarily
a DSIC/IR/BB mechanism) in a market with n buyers and m sellers.
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Figure 1: The optimal allocation.

Claim 1. The (post-trade) welfare is equal to the sum of the highest m values in the
population.

Proof. The agents with items are in the green boxes.

The buyers with items are among the top m highest-valued agents. The buyers
with items (in the green box) have higher values than those without as the buyers are ordered
in decreasing order. They also have higher values than the sellers without because of the
ordering of buyers and sellers, and @ > 5@ as it is in the optimal allocation.

The sellers with items are among the top m highest-valued agents. The sellers
with items (in the green box) have higher values than those without as the sellers are ordered
in increasing order. They also have higher values than the buyers without because of the
ordering of buyers and sellers, and b+ < s(¢+1) as it is not in the optimal allocation.

Then the m agents with items have higher values than the n agents without, so the
(post-trade) welfare is the sum of the values of those with items, which are the m highest
values. O



The Buyer Trade Reduction(BTR) Mechanism [1]. The simple prior-free mechanism
we will use is as follows, inspired by McAfee’s Trade Reduction mechanism [2]:

1. Solicit all buyer and seller values.
2. Compute the optimal allocation on the reported values.
3. Buy items at some p°; sell items to buyers at some p®.

(a) Try to use the value of the highest-valued unmatched buyer as b@+1) = pB = p¥
if sellers will accept. (They will, if batV) > 5@)),

(b) If sellers will not accept (so b@) < 5(9), then reduce the last trade between b(?
and s9. Buy at p® = 5@ and sell at p? = b,

Let BT R(n,m) denote the GFT from this mechanism in a market with n buyers and m
sellers.

Observation 2 (DSIC+IR). This mechanism is DSIC and ex-post IR because we set prices
only using the values of non-winning agents, so winning agents pay prices lower than their
values that they cannot impact.

Observation 3 (Budget Balance). Setting prices according to (3a) or (3b) satisfies weak
budget balance.

Claim 2. BTR reduces if and only if the m -+ 15° highest-valued agent is a seller.
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Figure 2: The optimal allocation.

Proof. We are in case (3a) where @) works as a price for sellers exactly when b4+ > 5@
otherwise we are in case (3b) and we must reduce a trade.

Because the number of trades in the optimal allocation is ¢ by definition, then there are
the ¢ highest-valued buyers and m — ¢ highest-valued sellers with items among the top m
highest-valued agents.

Who is next, as the m + 1°*7 Either a buyer or a seller. If it is a buyer, then the m + 1%
highest-valued agent is specifically b4+ and thus bt1) > 59 so we do not need to reduce.



However, f it is a seller, then the m + 1% highest-valued agent is specifically s, and thus
5@ > plat) 50 we are in case (3b) and must reduce the trade between b and 59 in order
to set prices. O

Theorem 4 (Babaioff G. Gonczarowski [1]). When buyers and sellers are drawn i.i.d. from
some distribution F', giwen an initial market with n buyers and m sellers, running Buyer
Trade Reduction on a market with 1 additional buyer yields at least as much GFT as the
optimal GF'T in the initial market.

BTR(n+ 1,m) > opT(n,m).
Proof. Approach: Aim to show that
opPT(n + 1,m) — opT(n,m) > OPT(n+ 1,m) — BT R(n + 1, m).

First we consider how OPT changes with augmentation of the market: opT(n + 1,m) —
OPT(n, m).

A way to compare the larger and smaller markets is as follows. We draw n + 1 (or n)
buyers and m sellers in the following way:

e Draw n + 1 4+ m samples i.i.d. from F.
e (For a market with only n buyers, exclude 1 sample UAR.)

e Label m samples UAR as sellers.

Case 1: The excluded sample, to cut down to n, is among the lowest n + 1 values. Then
there is no change in the highest m values between the two markets, thus, there is no change
in the welfare or GFT between the two markets. This case occurs with probability %

Case 2: The excluded sample, to cut down to n, is among the highest m values. This
happens with probability .

In this event, the change in OPT is the difference in the sum of the top m values—that
is, the difference between the removed sample and what was previously the m + 15 sample

which got pushed up to replace it.
= E[sample removed | from top m] — E[m + 1%]
= E[1 to m UAR] — E[m + 1*'].
Now, we compare OPT(n + 1,m) — BT R(n + 1, m)—how our mechanism does compared to

OPT in the larger market.

Case 1: The m + 1% highest-valued agent is a buyer, in which case, BTR doesn’t reduce,

and there is no difference between the mechanism and opT. This case occurs with probability
n+1
n+l4+m’




Case 2: The m+ 1% highest-valued agent is a seller, in which case, BTR does reduce. This
happens with probability ———.

In this event, the difference between BTR and OPT is exactly the GF'T from the reduced
pair in expectation, E[b, — s,]. But we know that s(@ is the m + 1°* highest-valued agent,
and b9 is the lowest valued buyer among the top m valued agents, so the change is exactly

E[min buyer > m]—E[m + 1].

Putting this all together: We compare oPT(n+ 1, m)—0PT(n,m) and OPT(n+1,m)—
BTR(n + 1,m), splitting both into 2 cases where we can couple the probabilities of these
cases.

Case 1 occurs with probability % and there is no change in either quantity.

Case 2 occurs with probability —— and we see
E[1 to m UAR] — E[m + 1%']

as the change in OPT as the market is augmented, compared to the loss due to BTR in the
large market which is
E[min buyer > m] — E[m + 1]

where the second quantity is clearly smaller, as it is the smallest buyer value in the top m
vs. a random value in the top m. Hence

opPT(n + 1,m) — opT(n,m) > opT(n+ 1,m) — BT R(n + 1,m)
and thus, we have proven the claim:
BTR(n+ 1,m) > opT(n,m).

(This type of argument is called a coupling argument.) O

Additional Results. This paper also investigates environments beyond when buyers and
sellers are i.i.d. from the same distribution. They can be summarized below, where “Fg FSD
Fg¢” refers to the buyer distribution F'g first order stochastically dominating Fl.

Bulow-Klemper-style results: BT R(mp + sufficient # buyers, mg) > OPT(mp, mg).

#B, #S | Condition Sufficient #B Insufficient #B
mp,mg 1.i.d. (FB = FS) 1 0 [MS ’83]

mp, mg | arbitrary Fpg, Fs | Impossible (=) | 0 any finite number
1,1 Fy FSD Fg 4 1

mB,l FB FSD FS 4\/TTL_B UOgQTTLBJ

mp,mg FB FSD FS ms(mB + 4\/m_B) above




Sample-style results: The approximation that BTW with a single sample from the buyer
distribution gives to opT(1,1).

Condition Approx | LB
iid. (Fp=Fs) | 1/2 > 1/2
Fg FSD Fg 1/4 > 7/16
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