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Ascending Auctions

In ascending auctions, an auctioneer initializes prices for each item, iteratively raises the prices,
and bidders decide which items to bid on in each round. Sometimes activity rules are enforced,
e.g., once you drop out on an item, you can not bid on it again.

The most famous ascending auction is the single-item version, the English Auction.

The English Auction(e):

a. Initialize the item’s price pg to 0.
b. The initial set Sy of “active bidders” (willing to pay po for the item) is all bidders.
c. For iteration t =1,2,...

(a) Ask the set of active bidders S;_; if they’re willing to pay p;—1 +¢. Let S; be the bidders
who say yes. (Hopefully, v; > pi—1 +¢.)

(b) If |S¢| < 1: terminate the auction. Allocate the item to the remaining active bidder at
a price of p;_1. If no bidders remain, randomly allocate to a bidder from S;_1 at p;_1.

(c) Otherwise, p; = p1—1 + €.

Benefits of using ascending auctions:

e Ascending auctions are easier for bidders. It is generally easier to answer simple queries than
to report a valuation. This point will become especially relevant in more complex scenarios.

e Less information leakage. The winner of an ascending auction does not reveal its valuation,
just the fact that it is at least the second-highest bid.

e Transparency. The cause of a high selling price is generally more obvious in open ascending
auctions than in sealed-bid auctions.

e Potentially more seller revenue. For example, ascending auctions encourage “bidding wars.”
There is also some supporting theoretical work on this point [1].

e When there are multiple items, the opportunity for “price discovery.” A bidder has the op-
portunity for mid-course corrections and to better coordinate with other bidders.

What about k identical items? What should we do here?

The English Auction for k Identical Items:



The same as above, but replace step 3(b) with the following:

(b) If |S¢| < k: terminate the auction. Allocate the items to the remaining active bidders at a
price of p;_1. If there are items leftover (i.e., k — |S¢| > 0), randomly allocate them to bidders from
St—1\ St at pi_1.

Definition 1. In an ascending auction, sincere bidding means that a player answers all queries
honestly.

Claim 1. In the k identical item setting, in an English auction, sincere bidding is a dominant
strategy for every bidder (up to €).

Claim 2. In the k identical item setting, if all bidders bid sincerely in an English auction, the
welfare of the outcome is within ke of the maximum possible.

The English auction for k£ Identical Items terminates in vyax/€ iterations.
The above claims are left as an exercise.

We can use the following design process for ascending auctions:
a. As a sanity check, design a direct-revelation DSIC welfare-maximizing polytime mechanism.
b. Implement this as an ascending auction.

. (Truthfulness) Check that its EPIC.

[¢]

d. (Performance) Check that it still maximizes welfare under sincere bidding.

0]

. (Tractability) Check that it terminates in a reasonable number of iterations.

Additive Valuations, Parallel Auctions

The Additive Setting: There are m non-identical items and n bidders where each bidder 7 has
private valuation v;; for each item j. Bidder ¢ has an additive valuation for each set S, that is,

Uz(S) = Zvij.

jes

Step 1: What is the welfare-optimal direct revelation mechanism here? Just handle each item
separately—m Vickrey auctions!

What’s the analogous ascending implementation?

Parallel English Auctions: Maintain a set of interested bidders for each item, and the auction
for item j terminates when there’s only one active bidder remaining, breaking ties arbitrarily.

Is this DSIC? No!



Example: Two bidders, two items. v; = (3,2) and vo = (2,1).

What happens under sincere bidding? The first bidder wins both items at prices of 2 and 1
respectively.

Alternatively, bidder 2 could threaten the following strategy: if bidder 1 bids on item 1 in the
first turn, then bidder 2 will keep bidding on both items forever (or up to a price of 3). If not, they
will bid sincerely until the auction terminates.

Then bidder 1 bidding sincerely triggers bidder 2’s threat, causing bidder 1 to lose both items,
so bidder 1 would prefer to abandon item 1.

Recall that a dominant strategy maximizes a bidder’s utility independent of the actions played
by any other player. Bidder 2’s strategy may not maximize their utility, but it still implies that
sincere bidding is not a dominant strategy for bidder 1.

Instead, we need a different solution concept.

Definition 2. A strategy profile (o1,...,0,) is an ez post Nash equilibrium (EPNE) if, for every
bidder i and valuation v; € V;, the strategy o;(v;) is a best-response to every strategy profile
O'_Z'(V_i) with v_; € V_,.

In comparison, in a dominant-strategy equilibrium (DSE), for every bidder ¢ and valuation v;, the
action o;(v;) is a best response to every action profile a_; of A_;, whether of the form o_;(v_;) or
not.

Definition 3. A mechanism is ez post incentive compatible (EPIC) if sincere bidding is an ex post
Nash equilibrium in which all bidders always receive nonnegative utility.

Claim 3. For n additive bidders with m heterogenous items, in parallel English auctions, sincere
bidding by all bidders is an ex post Nash equilibrium (up to me).

Unit Demand

The Unit-Demand Setting: There are m non-identical items and n bidders where each bidder ¢ has
private valuation v;; for each item j. Bidder 7 is unit demand, that is, wants at most one item for
any set S:

v;(S) := maxv;;.
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First, solve the direct-revelation problem. What do we observe about the welfare-maximizing al-
location in the unit-demand setting? Each bidder gets at most one item. Each item is allocated
to one bidder. If an “edge” (i,j) represents bidder i’s value v;; for item j, then want to choose
the allocation that gives the maximum-weight bipartite matching. This problem can be solved in
polynomial time!

Refresh yourself on what the VCG mechanism looks like. Then what does the analogous ascending
auction look like?



If we were to just have parallel auctions, we need to worry about bidders getting multiple items.
The ascending auction implementation will essentially decrease demand (by raising prices) until
supply is equal to demand, where “demand” is equal to a bidder’s favorite item at the given prices.
This is called the Crawford-Knoer (CK) Auction, and we’ll discuss it in more detail next class.

Walrasian Equilibria in the Unit-Demand Setting

The Unit-Demand Setting: There are m non-identical items U and n bidders where each bidder ¢
has private valuation v;; for each item j. Bidder 7 is unit demand, that is, wants at most one item
for any set S:

v;(S) := max v;;.
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Definition 4. In the unit-demand setting, a Walrasian equilibrium (or “competitive equilibrium”)
is a price vector q € R™ defined on the items and a matching M of the bidders and items such
that:

a. Each bidder 7 is matched to a favorite item j € argmax{vi; — ¢;};evuio- (WE1)

Equivalently, q is an envy-free pricing.
b. An item j € U is unsold only if ¢(j) = 0. (WE2)

We call Dj(q) = argmax{vi; — q;}jcuufpy the demand set of i under prices q.

Claim 4 (First Welfare Theorem). In the unit-demand setting, if (q, M) is a Walrasian Equilibrium,
then M is a welfare-maximizing allocation.

b

This essentially says “markets are efficient,” and there are many “First Welfare Theorems” each

with this flavor. Exercise: Prove this.

What we’ll now see that is the VCG allocation and payment ¢s a WE, and in fact, is a lower
bound on all WE for the unit-demand setting.

Recall the VCG payment in this setting:
pi= 3 oM () — 3 oM (R))
ki ki

where M (k) is the item that k is allocated in the welfare-maximizing (maximum-weight) matching,

and M ™" is the welfare-maximizing matching without bidder 7.

Theorem 1 (VCG Payments Lower Bound WE). In the unit-demand setting, let p denote the
induced item price vector of the truthful-revelation VCG outcome and q a Walrasian price vector.
Then p(3) < q(j) for every item j.
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