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Beyond Dominant-Strategy: Bayesian Settings

There are many reasons why we can’t always require dominant strategies when design mechanisms.

(1) Requiring such a strong concept might not be tractable.

(2) Agents do not always have dominant strategies! What then?

We’ll now introduce the Bayesian setting.

Suppose the valuation vi of bidder i is drawn from a prior distribution Fi.

• We abuse notation and let Fi denote the cumulative distribution function (CDF) of the
distribution; that is, Fi(x) = Prvi∼Fi [vi ≤ x].

• We use fi(x) to denote the probability density function (pdf) of the distribution; that is,
fi(x) = d

dxFi(x).

• We use F or ~F to denote the joint distribution of the marginal buyer distributions Fi. That
is, if the buyers are independently distributed, then F is the product distribution F = ×iFi.
(Note however that buyers are not necessarily independently distributed in all settings.)

Unless otherwise noted, we assume that the prior distribution F is common knowledge to all bidders
and the mechanism designer (the seller).

Definition 1. A Bayes-Nash equilibrium (BNE) for a joint distribution F is a strategy profile
σ = (σ1, . . . , σn) such that for all i and v, σi(vi) is a best-response when other agents play σ−i(v−i)
when v−i ∼ F−i |vi .

Claim 1. Consider two identically and independently drawn bidders from F = U [0, 1]. It is a
(symmetric) BNE for each bidder to bid σi(vi) = vi/2 in the first-price auction.

Proof. Suppose bidder 2 is playing the strategy σ2(v2) = v2/2. We prove that bidder 1’s best-
response is σ1(v1) = v1/2. For now, call the bid given by σ1(v1) = b1.

Given bidder 2’s strategy, bidder 1’s expected utility is

Ev2 [ui(σ1(v1), σ2(v2)] = v1 · Ev2 [x1(σ1(v1), σ2(v2))]− Ev2 [p1(σ1(v1), σ2(v2))]

= v1 · Prv2 [b1 > v2/2]− Ev2 [b1 · 1[b1 > v2/2]] x, p in FPA

= Prv2 [b1 > v2/2] · [v1 − b1] def E
= F (2b1) · [v1 − b1] def F (·)
= min{2b1, 1} · [v1 − b1] F = U [0, 1]

= 2b1v1 − 2b21 if b1 ≤ 1/2

d

db1
Ev2 [ui(b1, v2/2)] = 2v1 − 4b1 if b1 ≤ 1/2 differentiate to max

=⇒ b1 = v1/2 which is ≤ 1/2 as v1 ≤ 1



Hence bidder 1’s best-response strategy is to bid σ1(v1) = v1/2 in response to σ2(v2) = v2/2, and
thus these strategies are a BNE.

Exercises (optional):

• Extend Myerson’s Lemma and the payment identity for Bayesian Incentive-Compatible (BIC)
mechanisms.

• Extend the Revelation Principle for BIC mechanisms.

• If you’re rusty with probability, show that for F = U [0, 1], the expected max of two draws
from F is 2/3 and the expected min is 1/3.

Theorem 1 (Revenue Equivalence). The payment rule and revenue of a mechanism is uniquely
determined by its allocation. Hence, any two mechanisms with the same allocation must earn the
same expected revenue in Bayes-Nash Equilibrium.

What is this theorem a corollary of? Prove this for the first-price auction and the Vickrey (second-
price) auction in the above setting!

Proof. This is just a corollary of Myerson’s Lemma! As we pointed out, the only variables in the
payment identity are the allocation rule! Payment is 100% determined by the allocation rule! Then
two mechanisms with the same allocation must have the same payments.

Consider the first-price auction and the second-price auction each with two bidders i.i.d. from
U [0, 1]. Let V 1 and V 2 denote the random variables that are the highest and second-highest draws
from U [0, 1], respectively. Note that two draws from the uniform distribution evenly divide the
interval in expectation: EV 1,V 2∼U [0,1][V

1] = 2/3 and EV 1,V 2∼U [0,1][V
2] = 1/3.

In the first-price auction, the item is allocated to V 1 at a payment of its BNE bid of V 1/2.
Then the expected winner’s payment (and thus revenue) is 1

2E[V 1] = 1/3.
In the second-price auction, the item is allocated to V 1 at a payment of the second-highest

bid b2 = V 2, since Vickrey is DSIC. Then the expected winner’s payment (and thus revenue) is
E[V 2] = 1/3.

Bayesian Settings

Using notions from the Bayesian setting and how bidders Bayesian update as they learn information,
we define three stages of the auction:

1. ex ante: Before any information has been drawn; i only knows F.

2. interim: Values vi have been drawn; i only knows their own valuation, and thus the updated
prior F |vi .

3. ex post : The auction has run and concluded. All bidders know all v1, . . . , vn.

Typically we discuss the ex post allocation and payment rules as a function of all of the values.
However, in the Bayesian setting, to reason about BIC, it often makes sense to take in terms
of interim allocation and payment rules which have the same information as bidder i before the
auction is run.



Definition 2. We define the interim allocation and payment rules in expectation over the updated
Bayesian prior given i’s valuation:

xi(vi) = PrF[xi(v) = 1 | vi] = EF[xi(v) | vi]

and
pi(vi) = EF[pi(v) | vi].

Our definition of Bayesian Incentive-Compatibility then follows:

Definition 3. A mechanism with interim allocation rule x and interim payment rule p is Bayesian
Incentive-Compatible (BIC) if

vixi(vi)− pi(vi) ≥ vixi(z)− pi(z) ∀i, vi, z.

Virtual Welfare

Imagine a single buyer will arrive with their private value v. We want to design DSIC mechanisms.

What mechanism should you use to maximize welfare (
∑

i vixi) Always give the bidder the item,
always give it away for free!

What should you do to maximize (expected) revenue? Post a price that maximizes Rev =
maxr r · [1− F (r)].

Definition 4. In a deterministic mechanism, given other bids b−i, bidder i’s critical bid is the
minimum bid b∗i = min{bi : xi(bi,b−i) = 1} such that bidder i is allocated to.

Then with b−i fixed, for all winning vi ≥ b∗i , i’s payment pi(vi,b−i) = b∗i is their critical bid.

What is winner i’s critical bid in a single-item auction? The second-highest bid!

What about in the k identical item setting? The k + 1st bid!
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