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Fall 2025 Prof. Kira Goldner

Revenue Maximization and Myersonian Virtual Welfare

Recap: For a single buyer will arrive with their private value v, for DSIC mechanisms:

• Maximize welfare (
∑

i vixi): Always give the bidder the item, always give it away for free!

• Maximize revenue: Post a price that maximizes Rev = maxr r · [1− F (r)].

• Critical bid: For a deterministic mechanism, given other bids b−i, bidder i’s critical bid is
the minimum bid b∗i = min{bi : xi(bi,b−i) = 1} such that bidder i is allocated to. Then with
b−i fixed, for all winning vi ≥ b∗i , i’s payment pi(vi,b−i) = b∗i is their critical bid.

• The revelation principle says that it’s without loss to focus only on truthful mechanisms.

• Payment is determined by the allocation:

pi(bi,b−i) = bi · xi(bi,b−i)−
∫ bi

0
xi(z,b−i) dz

We want to maximize Ev∼F[
∑

i pi(v)].

Evi∼Fi [pi(vi,v−i)] =

∫ ∞
0

fi(vi)pi(vi,v−i) dvi

=

∫ ∞
0

fi(vi)

[
vi · xi(vi,v−i)−

∫ vi

0
xi(z,v−i) dz

]
dvi

=

∫ ∞
0

[
fi(vi)vixi(vi,v−i)− xi(vi,v−i)

[∫ ∞
vi

fi(z) dz

]]
dvi (∗)

=

∫ ∞
0

[
fi(vi)vixi(vi,v−i)− xi(vi,v−i)[1− Fi(vi)]

]
dvi

=

∫ ∞
0

fi(vi)xi(vi,v−i)

[
vi −

[1− Fi(vi)]

fi(vi)

]
dvi

= Evi∼Fi [ϕi(vi)xi(vi,v−i)]

where

ϕi(vi) = vi −
[1− Fi(vi)]

fi(vi)

is the Myersonian virtual value and (∗) follows by switching the order of integration. Then

Revenue = Ev∼F[
∑
i

pi(v)] =
∑
i

Ev∼F[pi(v)] =
∑
i

Ev∼F[ϕi(vi)xi(vi,v−i)]



Note that this does require takes Ev−i∼F−i of both sides of our previous equation.

= Ev∼F[
∑
i

ϕi(vi)xi(v)] = Virtual Welfare

Given this conclusion, how should we design our allocation rule x to maximize expected virtual
welfare (expected revenue)? Give the item to the bidder with the highest virtual value!

When would this cause a problem with incentive-compatibility? When the corresponding x isn’t
monotone!

Definition 1. A distribution F is regular if the corresponding virtual valuation function ϕ(v) =

v − 1−F (v)
f(v) is strictly increasing.

Suppose we are in the single-item setting and all of the distributions are regular. What do the
payments look like in the virtual-welfare-maximizing allocation?

For a fixed b−i, if i is the winner, then i’s payment is i’s critical bid, which is ϕ−1i (b2) where
b2 is the second highest bid. Exercise: what about for k identical items?

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value
functions are regular.

Exercise: Argue this.

Figure 1: Virtual value functions ϕ(v) = v − 1−F (v)
f(v) for the uniform and bimodal agent examples.

It will be helpful to keep the following two examples in mind:

a. a uniform agent with v ∼ U [0, 1]. Then F (x) = x and f(x) = 1.

b. a bimodal agent with

v ∼

{
U [0, 3] w.p.34
U(3, 8] w.p.14

and f(v) =

{
3
4 v ∈ [0, 3]
1
20 v ∈ (3, 8]



Do the following:

• Calculate the virtual values for both examples.

a. ϕ(v) = 2v − 1

b. 1− F (v) =

{
1
4 +

(
3−v
3

)
· 34 v ∈ [0, 3](

8−v
5

)
· 14 v ∈ (3, 8]

so ϕ(v) =

{
4
3(v − 1) v ∈ [0, 3]

2v − 8 v ∈ (3, 8]

• Are they regular? Are there any issues using the allocation that maximizes expected virtual
welfare?

a. Yep!

b. Nope. As we can see in Figure 1, ϕ(3.5) = −1 < ϕ(2) = 4
3 . This implies a bidder gets

allocated with v = 2 but then stops getting allocated as they increase their value to 3.5.

• What does that allocation actually look like?

a. Allocate to all bidders above v = 0.5 at a price (critical bid) of ϕ−1(0) = 0.5.

b. The virtual welfare maximizing allocation isn’t DSIC! Turns out you can do something
to make ϕ monotone and then use the VW-maximizing allocation. We’ll do this later in
class.

Quantile Space

In value space:

• an agent has value v.

• the fraction of the distribution with value above v is 1− F (v).

• the revenue from posting a “take-it-or-leave-it” price of v is v[1− F (v)].

In quantile space: q = 1− F (v).

• an agent has value v.

• the fraction of the distribution with value above v is q(v) = 1− F (q).

• the revenue from posting a “take-it-or-leave-it” price of v(q) = F−1(1− v) is v(q) · q.

Example: Consider a distribution that is U [$0, $10]. Then the quantile 0.1 corresponds to $9, where
10% of the population might have a higher value. We let v(q) denote the corresponding value, so
v(0.1) is $9.

Definition 2. The quantile of a single-dimensional agent with value v ∼ F is the measure with
respect to F of stronger values, i.e., q = 1 − F (v); the inverse demand curve maps an agent’s
quantile to her value, i.e., v(q) = F−1(1− q).



Quantile Distribution: Quantiles are particularly useful because we can draw an agent from
any distribution by drawing a quantile q ∼ U [0, 1]. That is, for any q̂ and any distribution F ,
PrF [q ≤ q̂] = q̂. In English: the probability that an agent has a value in the top 0.3 of the distri-
bution is 0.3.

Note: For everything we do today, we could stay in value space, (and sometimes we’ll compare),
but we’d have to normalize by the distribution using f(v), which makes everything a bit messier
and a bit trickier.

Example: For the example of a uniform agent where F (z) = z, the inverse demand curve is
v(q) = 1− q.

For an allocation rule x(·) in value space, we define an allocation rule in quantile space y(·):

y(q) = x(v(q)).

As x(·) is monotone weakly increasing, then y(·) is monotone weakly decreasing.

Definition 3. The revenue curve of a single-dimensional agent specified by R(v) = v · [1− F (v)].

Figure 2: A revenue curve in value space.

Note: This is only the revenue that can be achieved by posting a single take-it-or-leave-it price.
This does not capture the expected revenue of any given mechanism.

Definition 4. The revenue curve of a single-dimensional linear agent specified by inverse demand
curve v(·) is P (q) = q · v(q) for any q ∈ [0, 1].

Assuming the lower-end of the support of F is 0 and the upper end is some finite vmax, then
P (0) = 0 and P (1) = 0.

Claim 2. Any allocation rule y(·) can be expressed as a distribution of posted prices.

Proof. Given the allocation rule y(·), consider the distribution Gy(z) := 1 − y(z). We show that
the mechanism that randomly draws a quantile q̂ ∼ Gy from the distribution Gy and posts the
price v(q̂) is equivalent.

For a random price v(q̂) and fixed quantile q, then

Prq̂∼Gy [v(q̂) < v(q)] = Prq̂∼Gy [q̂ > q] = 1−Gy(q) = y(q).



Claim 3. Any DSIC allocation rule x(·) can be expressed as a distribution of posted prices.

See Figure for an example. In general, the PDF of the distribution of randomized prices is x′(v)
for a price of v to achieve an allocation rule of v.
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