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Ironing for Single-Parameter Optimal Revenue

Recap

Myerson’s theory for single-parameter revenue maximization says: expected revenue is equal to
expected virtual welfare E~v∼~F [

∑
i ϕi(vi)xi(~v)]. Then the allocation rule that maximizes this is, for

each ~v, to allocate to the bidder with the highest non-negative virtual value. This allocate will be
truthful if it is monotone, which it is when ϕi(vi) is monotone non-decreasing in vi, which occurs
exactly when the distribution Fi is regular. If this is the case, we can apply the payment identity
to the allocation rule and this yields a DSIC mechanism.

Price-posting revenue curves in

• Value space: R(v) = v · [1− F (v)]

• Quantile Space: P (q) = v(q) · q where v(q) = F−1(1− v) since q = 1− F (v).

Back to Quantile Space and Ironing

Claim 1. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that P ′(q) = ϕ(v(q)):

P ′(q) =
d

dq
(q · v(q)) = v(q) + qv′(q) = v − 1− F (v)

f(v)
= ϕ(v(q)).

Thus Φ(q) =
∫ q
0 ϕ(q̂) dq̂ = P (q).

To summarize: a distribution F is regular if and only if:

• its corresponding revenue curve in quantile space is concave.

• ϕ(q) is strictly increasing.

• f(v)ϕ(v) is strictly increasing. (Why?)

Claim 2. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that P ′(q) = ϕ(v(q)):

P ′(q) =
d

dq
(q · v(q)) = v(q) + qv′(q) = v − 1− F (v)

f(v)
= ϕ(v(q)).

Thus Φ(q) =
∫ q
0 ϕ(q̂) dq̂ = P (q).



(a) Price of $3. (b) Price of $6.

(c) Randomized price with expectation $5. (d) Ironed revenue curve.

Figure 1: (a) An allocation rule for a take-it-or-leave-it price of $3. (b) An allocation rule for a
take-it-or-leave-it price of $6. (c) An allocation that can be written x(v) = 0 for v < 3, x(v) = 1

3
for v ∈ [3, 6), and x(v) = 1 for v ≥ 6 . Alternatively, a randomized take-it-or-leave-it price that is
$3 with probability 1

3 and $6 with probability 2
3 , that is, $5 = 1

3 · 3 + 2
3 · 6 in expectation. (d) The

revenue curve in value space, including ironed intervals where convex combinations of prices can
attain higher revenue than deterministic prices.

Definition 1. The ironing procedure for (non-monotone) virtual value function ϕ (in quantile
space) is:

(i) Define the cumulative virtual value function as Φ(q̂) =
∫ q̂
0 ϕ(q) dq.

(ii) Define ironed cumulative virtual value function as Φ̄(·) as the concave hull of Φ(·).

(iii) Define the ironed virtual value function as ϕ̄(q) = d
dq Φ̄(q) = Φ̄′(q).

Summary: Take the concave hull of the revenue curve in quantile space. Its derivative forms the
ironed virtual values. (The derivatives of the original curve are the original virtual values.)

Theorem 1. For any monotone allocation rule y(·) and any virtual value function ϕ(·), the expected
virtual surplus of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

E[ϕ(q)y(q)] ≤ E[ϕ̄(q)y(q)].

Furthermore, this inequality holds with equality if the allocation rule y satisfies y′(q) = 0 for all q
where Φ̄(q) > Φ(q).



Figure 2: The bimodal agent’s (ironed) revenue curve and virtual values in quantile space.

Proof. Recall integration by parts:∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx.

By integration by parts for any virtual value function ϕ(·) and monotone allocation rule y(·),

E[ϕ(q)y(q)] = E[−y′(q)Φ(q)].

Step by step, that is,

E[ϕ(q)y(q)] =

∫ 1

0
ϕ(q)y(q) dq q ∼ U [0, 1]

= Φ(1)y(1)− Φ(0)y(0)−
∫ 1

0
y′(q)Φ(q) dq

= 0 + E[−y′(q)Φ(q)].

because Φ(1) = 1 · v(1) = 0 as v(1) = 0, and Φ(0) = 0 · v(0) = 0. Notice that the weakly decreasing
monotonicity of the allocation rule y(·) implies the non-negativity of −y′(q). With the left-hand side
of equation as the expected virtual surplus, it is clear that a higher cumulative virtual value implies
no lower expected virtual surplus. By definition of Φ̄(·) as the concave hull of Φ(·), Φ(q) ≤ Φ̄(q)
and, therefore, for any monotone allocation rule, in expectation, the ironed virtual surplus is at
least the virtual surplus, i.e., E[−y(q)Φ(q)] ≤ E[−y(q)Φ̄(q)].

To see the equality under the assumption that y′(q) = 0 for all q where Φ̄(q) > Φ(q), rewrite
the difference between the ironed virtual surplus and the virtual surplus via equation as,

E[ϕ̄(q)y(q)]− E[ϕ(q)y(q)] = E[−y′(q)(Φ̄(q)− Φ(q))].

The assumption on y′ implies the term inside the expectation on the right-hand side is zero ∀q.



Modifying this statement for value space:

Theorem 2. For any monotone allocation rule x(·) and any virtual value function ϕ(·), the expected
virtual welfare of an agent is upper-bounded by their expected ironed virtual welfare, i.e.,

E[ϕ(v)x(v)] ≤ E[ϕ̄(v)x(v)].

Furthermore, this inequality holds with equality if the allocation rule x satisfies x′(v) = 0 for all v
where Φ̄(v) > Φ(v).

Claim 3. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

Example: How would you obtain the ironed revenue at $5 instead of just R(5)?

For p ∈ [p, p] where R(p) > R(p), if p = αp+ (1−α)p, we achieve R(p) by randomizing the prices p
and p with probabilities α and 1−α accordingly to yield αR(p)+(1−α)R(p) on the concave closure.

Note: Recall that the expected revenue of any mechanism, not just a posted price, can be ex-
pressed by its virtual welfare. (We have now shown that you could decompose it into a distribution
of posted prices and thus express the revenue that way, too, actually.)

What’s the final mechanism? Now that ϕ̄i(·) is monotone (for every i), we choose the x(·)
that maximizes Ev[

∑
i ϕi(v)xi(v)], which will thus be monotone. By Theorem 2, this is an upper

bound on the optimal revenue.

For any ironed interval [a, b], examine ϕ̄(v) for v ∈ [a, b]. P (q(v)) is a straight line (linear) there,
so ϕ̄(q(v)) will be constant.

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]? It will
be constant on [a, b], and thus its derivative will be zero.

Hence ironed virtual welfare is equal to virtual welfare by Theorem 2, so maximizing one max-
imizes the other.

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are
as follows:

• Bidder 1 is uniform. F1(v) = v−1
H−1 on [1, H].

• Bidder 2 is exponential. F2(v) = 1− e−v for v ∈ (1,∞).

• Bidder 3 is exponential. F3(v) = 1− e−2v for v ∈ (1,∞).

What does the optimal mechanism look like?

First we calculate their virtual value functions.



• f1(v) = 1
H−1 for v ∈ [1, H]. ϕ1(v) = 2v −H.

• f2(v) = e−v for v ∈ (1,∞). ϕ2(v) = v − 1.

• f3(v) = 2e−2v for v ∈ (1,∞). ϕ3(v) = v − 1
2 .

The bidders have personalized reserve prices (i.e., have positive virtual values with vi above) r1 = H
2 ,

r2 = 1, r3 = 1
2 . Note that based on the support of F2 and F3 that bidder 2 and 3 are always above

their reserve prices.

The optimal mechanism excludes bidder 1 if v1 < r1 = H
2 , and otherwise allocates to the bid-

der with the largest virtual value ϕi(vi). If some ϕj(vj) is the second highest virtual value and
exceeds its reserve price, then bidder i pays a price of ϕ−1i (ϕj(vj)); otherwise, bidder i just pays ri.

Definition 2. A reserve price r is a minimum price below which no buyer may be allocated the
item. There may also be personalized reserve prices ri where if vi < ri then vi will not be allocated
to. Bidders above their reserves participate in the auction.
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