## Ironing for Single-Parameter Optimal Revenue

### Recap

Myerson's theory for single-parameter revenue maximization says: expected revenue is equal to expected virtual welfare  $\mathbb{E}_{\vec{v} \sim \vec{F}}[\sum_i \varphi_i(v_i) x_i(\vec{v})]$ . Then the allocation rule that maximizes this is, for each  $\vec{v}$ , to allocate to the bidder with the highest non-negative virtual value. This allocate will be truthful if it is monotone, which it is when  $\varphi_i(v_i)$  is monotone non-decreasing in  $v_i$ , which occurs exactly when the distribution  $F_i$  is regular. If this is the case, we can apply the payment identity to the allocation rule and this yields a DSIC mechanism.

Price-posting revenue curves in

- Value space:  $R(v) = v \cdot [1 F(v)]$
- Quantile Space:  $P(q) = v(q) \cdot q$  where  $v(q) = F^{-1}(1-v)$  since q = 1 F(v).

### Back to Quantile Space and Ironing

Claim 1. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that  $P'(q) = \varphi(v(q))$ :

$$P'(q) = \frac{d}{dq} (q \cdot v(q)) = v(q) + qv'(q) = v - \frac{1 - F(v)}{f(v)} = \varphi(v(q)).$$

Thus  $\Phi(q) = \int_0^q \varphi(\hat{q}) d\hat{q} = P(q)$ .

To summarize: a distribution F is regular if and only if:

- its corresponding revenue curve in quantile space is concave.
- $\varphi(q)$  is strictly increasing.
- $f(v)\varphi(v)$  is strictly increasing. (Why?)

Claim 2. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that  $P'(q) = \varphi(v(q))$ :

$$P'(q) = \frac{d}{dq} (q \cdot v(q)) = v(q) + qv'(q) = v - \frac{1 - F(v)}{f(v)} = \varphi(v(q)).$$

Thus  $\Phi(q) = \int_0^q \varphi(\hat{q}) d\hat{q} = P(q)$ .



Figure 1: (a) An allocation rule for a take-it-or-leave-it price of \$3. (b) An allocation rule for a take-it-or-leave-it price of \$6. (c) An allocation that can be written x(v)=0 for v<3,  $x(v)=\frac{1}{3}$  for  $v\in[3,6)$ , and x(v)=1 for  $v\geq 6$ . Alternatively, a randomized take-it-or-leave-it price that is \$3 with probability  $\frac{1}{3}$  and \$6 with probability  $\frac{2}{3}$ , that is,  $\$5=\frac{1}{3}\cdot 3+\frac{2}{3}\cdot 6$  in expectation. (d) The revenue curve in value space, including ironed intervals where convex combinations of prices can attain higher revenue than deterministic prices.

**Definition 1.** The *ironing procedure* for (non-monotone) virtual value function  $\varphi$  (in quantile space) is:

- (i) Define the cumulative virtual value function as  $\Phi(\hat{q}) = \int_0^{\hat{q}} \varphi(q) dq$ .
- (ii) Define ironed cumulative virtual value function as  $\bar{\Phi}(\cdot)$  as the concave hull of  $\Phi(\cdot)$ .
- (iii) Define the ironed virtual value function as  $\bar{\varphi}(q) = \frac{d}{dq}\bar{\Phi}(q) = \bar{\Phi}'(q)$ .

**Summary:** Take the concave hull of the revenue curve in quantile space. Its derivative forms the ironed virtual values. (The derivatives of the original curve are the original virtual values.)

**Theorem 1.** For any monotone allocation rule  $y(\cdot)$  and any virtual value function  $\varphi(\cdot)$ , the expected virtual surplus of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

$$\mathbb{E}[\varphi(q)y(q)] \leq \mathbb{E}[\bar{\varphi}(q)y(q)].$$

Furthermore, this inequality holds with equality if the allocation rule y satisfies y'(q) = 0 for all q where  $\bar{\Phi}(q) > \Phi(q)$ .



Figure 2: The bimodal agent's (ironed) revenue curve and virtual values in quantile space.

*Proof.* Recall integration by parts:

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

By integration by parts for any virtual value function  $\varphi(\cdot)$  and monotone allocation rule  $y(\cdot)$ ,

$$\mathbb{E}[\varphi(q)y(q)] = \mathbb{E}[-y'(q)\Phi(q)].$$

Step by step, that is,

$$\mathbb{E}[\varphi(q)y(q)] = \int_0^1 \varphi(q)y(q) \, dq \qquad q \sim U[0, 1]$$

$$= \Phi(1)y(1) - \Phi(0)y(0) - \int_0^1 y'(q)\Phi(q) \, dq$$

$$= 0 + \mathbb{E}[-y'(q)\Phi(q)].$$

because  $\Phi(1) = 1 \cdot v(1) = 0$  as v(1) = 0, and  $\Phi(0) = 0 \cdot v(0) = 0$ . Notice that the weakly decreasing monotonicity of the allocation rule  $y(\cdot)$  implies the non-negativity of -y'(q). With the left-hand side of equation as the expected virtual surplus, it is clear that a higher cumulative virtual value implies no lower expected virtual surplus. By definition of  $\bar{\Phi}(\cdot)$  as the concave hull of  $\Phi(\cdot)$ ,  $\Phi(q) \leq \bar{\Phi}(q)$  and, therefore, for any monotone allocation rule, in expectation, the ironed virtual surplus is at least the virtual surplus, i.e.,  $\mathbb{E}[-y(q)\Phi(q)] \leq \mathbb{E}[-y(q)\bar{\Phi}(q)]$ .

To see the equality under the assumption that y'(q) = 0 for all q where  $\bar{\Phi}(q) > \Phi(q)$ , rewrite the difference between the ironed virtual surplus and the virtual surplus via equation as,

$$\mathbb{E}[\bar{\varphi}(q)y(q)] - \mathbb{E}[\varphi(q)y(q)] = \mathbb{E}[-y'(q)(\bar{\Phi}(q) - \Phi(q))].$$

The assumption on y' implies the term inside the expectation on the right-hand side is zero  $\forall q$ .  $\Box$ 

Modifying this statement for value space:

**Theorem 2.** For any monotone allocation rule  $x(\cdot)$  and any virtual value function  $\varphi(\cdot)$ , the expected virtual welfare of an agent is upper-bounded by their expected ironed virtual welfare, i.e.,

$$\mathbb{E}[\varphi(v)x(v)] \le \mathbb{E}[\bar{\varphi}(v)x(v)].$$

Furthermore, this inequality holds with equality if the allocation rule x satisfies x'(v) = 0 for all v where  $\bar{\Phi}(v) > \Phi(v)$ .

Claim 3. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

**Example:** How would you obtain the ironed revenue at \$5 instead of just R(5)?

For  $p \in [\underline{p}, \overline{p}]$  where  $\overline{R}(p) > R(p)$ , if  $p = \alpha \underline{p} + (1 - \alpha)\overline{p}$ , we achieve  $\overline{R}(p)$  by randomizing the prices  $\underline{p}$  and  $\overline{p}$  with probabilities  $\alpha$  and  $1 - \alpha$  accordingly to yield  $\alpha R(p) + (1 - \alpha)R(\overline{p})$  on the concave closure.

**Note:** Recall that the expected revenue of *any mechanism*, not just a posted price, can be expressed by its virtual welfare. (We have now shown that you could decompose it into a distribution of posted prices and thus express the revenue that way, too, actually.)

What's the final mechanism? Now that  $\bar{\varphi}_i(\cdot)$  is monotone (for every i), we choose the  $x(\cdot)$  that maximizes  $\mathbb{E}_v[\sum_i \varphi_i(v)x_i(v)]$ , which will thus be monotone. By Theorem 2, this is an *upper bound* on the optimal revenue.

For any ironed interval [a, b], examine  $\bar{\varphi}(v)$  for  $v \in [a, b]$ . P(q(v)) is a straight line (linear) there, so  $\bar{\varphi}(q(v))$  will be constant.

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]? It will be constant on [a, b], and thus its derivative will be zero.

Hence ironed virtual welfare is equal to virtual welfare by Theorem 2, so maximizing one maximizes the other.

# Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are as follows:

- Bidder 1 is uniform.  $F_1(v) = \frac{v-1}{H-1}$  on [1, H].
- Bidder 2 is exponential.  $F_2(v) = 1 e^{-v}$  for  $v \in (1, \infty)$ .
- Bidder 3 is exponential.  $F_3(v) = 1 e^{-2v}$  for  $v \in (1, \infty)$ .

What does the optimal mechanism look like?

First we calculate their virtual value functions.

- $f_1(v) = \frac{1}{H-1}$  for  $v \in [1, H]$ .  $\varphi_1(v) = 2v H$ .
- $f_2(v) = e^{-v}$  for  $v \in (1, \infty)$ .  $\varphi_2(v) = v 1$ .
- $f_3(v) = 2e^{-2v}$  for  $v \in (1, \infty)$ .  $\varphi_3(v) = v \frac{1}{2}$ .

The bidders have personalized reserve prices (i.e., have positive virtual values with  $v_i$  above)  $r_1 = \frac{H}{2}$ ,  $r_2 = 1$ ,  $r_3 = \frac{1}{2}$ . Note that based on the support of  $F_2$  and  $F_3$  that bidder 2 and 3 are always above their reserve prices.

The optimal mechanism excludes bidder 1 if  $v_1 < r_1 = \frac{H}{2}$ , and otherwise allocates to the bidder with the largest virtual value  $\varphi_i(v_i)$ . If some  $\varphi_j(v_j)$  is the second highest virtual value and exceeds its reserve price, then bidder i pays a price of  $\varphi_i^{-1}(\varphi_j(v_j))$ ; otherwise, bidder i just pays  $r_i$ .

**Definition 2.** A reserve price r is a minimum price below which no buyer may be allocated the item. There may also be personalized reserve prices  $r_i$  where if  $v_i < r_i$  then  $v_i$  will not be allocated to. Bidders above their reserves participate in the auction.

#### Acknowledgements

This lecture was developed in part using materials by Jason Hartline, and in particular, his book "Mechanism Design and Approximation" [1].

### References

[1] Jason D. Hartline. Mechanism design and approximation. Book draft. October, 122, 2013.