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Interdependent Values II

What allocation will maximize social welfare?

The Vickrey Auction modified for the interdependent setting: collect signals, compute val-
ues, and allocate to the buyer with the highest value.

Payments. What are the payments?

Fix the signals of other bidders s−i. When bidder i is the winner, they pay their value
at their critical signal s∗i . That is, at the signal s∗i (s−i) where they begin winning (being the
highest bidder), s∗i = min{z | xi(vi(z, s−i)) = 1}.

Truthfulness. Is this mechanism EPIC? When might it not be?

When xi(·) is not monotone in si for some i—when, for some s−i, as i increases their signal,
they go from being the highest bidder to not the highest bidder.

Assumptions. What assumption could we place on the class of valuations to ensure that
the mechanism is always EPIC?

Once i is the highest-valued bidder, then as they increase their signal si, they remain the
highest bidder. We call this single-crossing—once they cross the other bidders’ values and
become the highest, they never cross back down to become lower than the highest. This is
precisely the condition that makes Vickrey truthful.

More specifically, we will ask that bidder i is most sensitive to their own signal. Formally,
the single-crossing condition requires that for all bidders i and j,

∂

∂si
vi(si, s−i) ≥

∂

∂si
vj(si, s−i).

Beyond Single-Crossing [1]

What happens when we don’t have single-crossing? Can we at least guarantee some approx-
imation to social welfare?

Example. [Impossibility for deterministic prior-free mechanisms without SC.] Consider
a scenario with two bidders (bidder 1 and bidder 2), where S1 = {0, 1} and S2 = {0}, and



the following valuation functions:

v1(s1 = 0, s2 = 0) = r; v1(s1 = 1, s2 = 0) = r;

v2(s1 = 0, s2 = 0) = 1; v2(s1 = 1, s2 = 0) = r2.

It is easy to see that v1 does not satisfy single-crossing since when s1 increases, v1 does not
increase but v2 increases by r2−1, making v1 go from being r times greater than v2 to being
r times smaller than it.

We claim that, for these valuations, no truthful, deterministic, and prior-free mecha-
nism has an approximation ratio better than r. To see this, consider the signal profile
(s1 = 0, s2 = 0). To get a better than r-approximation for this profile, bidder 1 must win
the item. Truthfulness requires the allocation to be monotone in each bidder’s signal, hence
bidder 1 must also win at report (s1 = 1, s2 = 0), which results in an allocation that is a
factor of r off from the optimal allocation. Since r is arbitrary, the approximation ratio is
arbitrarily bad.

Example. [Impossibility result for randomized mechanisms without SC.] Consider the case
where every bidder has the following signal distribution for some small ε > 0,

si =

{
1 w.p. ε

0 w.p. 1− ε,

and each agent i has a valuation vi(s) =
∏

j 6=i sj; that is, the bidder has a value 1 if and only
if every other agent has signal 1. The optimal expected welfare is 1 whenever at least n− 1
bidders have a 1 signal. This happens with probability εn + n · εn−1(1− ε). Therefore,

opt = εn + n · εn−1(1− ε) > nεn−1(1− ε). (1)

Consider any truthful mechanism at profile (si = 0, s−i = 1). At this profile, the mechanism
gets bidder i’s value in welfare with probability that he is allocated, xi(si = 0, s−i = 1), and
otherwise gets zero since no other bidder has non-zero value. By monotonicity, for every i,
we have that xi(si = 0, s−i = 1) ≤ xi(1), and by feasibility,

∑
i xi(1) ≤ 1. Under any other

profile (where at least two signals are 0), all agents have zero value, so welfare is zero. The
expected welfare of any truthful mechanism is thus bounded by

Welfare =
∑
i

Pr[si = 0, s−i = 1] · xi(si = 0, s−i = 1) · 1 + Pr[s = 1]
∑
i

xi(1) · 1

=
∑
i

εn−1(1− ε) · xi(si = 0, s−i = 1) + εn
∑
i

xi(1)

≤ εn−1(1− ε)
∑
i

xi(1) + εn
∑
i

xi(1)

≤ εn−1(1− ε) + εn

= εn−1. (2)



Combining (1) with (2), we get that the approximation ratio of any monotone mechanism is
Welfare/opt ≤ 1

n(1−ε) which can be made arbitrarily close to 1/n; this is the same as the
welfare attained by just allocating to a random bidder.

A Restricted Class. Optimal welfare is not attainable for general valuations. For what
natural restricted class of valuations can we achieve some α-approximation to optimal social
welfare for every profile of signals s (prior-free) with an EPIC mechanism?

Submodularity over Signals [2]

Definition 1. Valuation vi(·) is submodular over signals if, for all j, when s−j is lower, vi(·)
is more sensitive to sj. For all j, and for any s−j ≤ s′−j:

∂

∂sj
vi(sj, s−j) ≥

∂

∂sj
vi(sj, s

′
−j)

Random-Sampling Vickrey Auction.

• Elicit si from each bidder i.

• Assign each bidder into set A or set B w.p. 1/2 independently.

• For each bidder i ∈ A, and use proxy value v̂i = vi(si,0A\i, sB).

• Allocate to the potential winner in A with the highest proxy value.

Theorem 1. The RS Vickrey Auction is EPIC and achieves a prior-free 1
4
-approximation

to the optimal welfare.

To prove this theorem, we need to address (1) truthfulness and (2) the approximation guar-
antee.

Truthfulness. Is this allocation monotone? Yes, it is, for each partition!

Approximation. Is vi(si,0A\i, sB) a good way to choose a winner?

Lemma 1 (Key Lemma). Let vi be a submodular over signals valuation. Partition all agents
other than i uniformly at random into sets A and B. Then

EA,B[vi(si,0A, sB)] ≥ 1

2
vi(s).

Proof. For any C ⊆ [n] \ {i} and D = ([n] \ {i}) \ C, we consider the two events:

• A = C is chosen as the random subset, B = D.

• A = D is chosen as the random subset, B = C.



First, we show that vi(si, sC ,0D) + vi(si,0C , sD) ≥ vi(s):

vi(si,0C , sD) ≥ vi(si,0C , sD)− vi(si,0C ,0D) by non-negativity of vi(·)
≥ vi(si, sC , sD)− vi(si, sC ,0D) by submodularity of vi(·)
≥ vi(s)− vi(si, sC ,0D).

Now, we conclude by summing over all events (subsets of [n] \ {i}) and coupling them into
(C,D) pairs that partition [n] \ {i}, for which the above holds.

Since every item is placed in A or B with equal probability, then each of the 2n−1 subsets
are selected with equal probability, 1/2n−1.

EA [vi(si, sA,0B)] =
∑

A⊆[n]\{i}

Pr[A] · vi(si, sA,0B)

=
1

2n−1 ·
∑

A⊆[n]\{i}

vi(si, sA,0B)

≥ 1

2n−1 ·
2n−1

2
vi(s) =

1

2
vi(s),

because there are 2n−1/2 pairs of subsets that partition [n] \ {i}.

Proof of Theorem 1. Approximation: Suppose the highest-valued bidder at s is i∗, so our
goal is to approximate vi∗(s): with probability 1/2, i∗ ∈ A, in which case the chosen winner
j has true value at least their proxy value which must be at least i∗’s proxy value to be
selected the winner.

Welfare = EA,B[vj(s) | j = max
i∈A

v̂i]

≥ EA,B[max
j∈A

v̂j]

≥ 1

2
EA,B[max

j∈A
v̂j | i∗ ∈ A] +

1

2
EA,B[max

j∈A
v̂j | i∗ 6∈ A]

≥ 1

2
EA,B[v̂i∗ | i∗ ∈ A] + 0

=
1

2
EA,B[vi∗(si∗ ,0A\i∗ , sB) | i∗ ∈ A]

≥ 1

4
vi∗(s). Key Lemma

By the Key Lemma, i∗’s expected proxy value is at least 1
2
vi∗(s). This gives a 1/4 approxi-

mation.
Truthfulness: If bidder i increases si, then their proxy value vi(si,0A\i, sB) increases.
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