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Behavioral Economics I

Thus far, we have assumed that an agent’s utility is quasilinear and that an agent maximizes
expected utility :

ui(bi,b−i) = xi(bi,b−i)(vi − pi(bi,b−i)).

Note that this is equivalent to what we’ve been doing, where we’ve said that ui = xivi − p̂i,
and here pi = p̂i/xi when xi > 0, and should otherwise be 0 anyway for IR.

However, humans do not always maximize this objective. Some environments and some
individuals lead to different behavior. Consider the following.

Gamble A $10 w.p. 1

Gamble B

{
Y = $20 w.p. 0.5

$0 w.p. 0.5

Which gamble do you prefer? For what value of Y would you prefer gamble B?

What if the gambles instead look like the following:

Gamble A $1000 w.p. 1

Gamble B

{
Y + $990 w.p. 0.5

$990 w.p. 0.5

How can we explain this behavior?

The Expected Utility Theory of von Neumann Morgenstern [15] says that this can be ex-
plained by agents having a non-linear value function for money.

ui(bi,b−i) = xi(bi,b−i) ·m(vi − pi(bi,b−i)).

One can arrive at the theory that agents are expected utility maximizers from a few small
number of natural axioms:

• Completeness: For any two outcomes (including lotteries) A and B, an agent can rank
these. (Either A � B or B � A or both.)

• Transitivity: If A � B and B � C then A � C.



• Continuity: Let A � B � C. Then there exists some p ∈ [0, 1] such that B is equally
preferred to pA+ (1− p)C.

• Independence of Irrelevant Alternatives: If A � B, then tA+ (1− t)C � tB+ (1− t)C
for every lottery C and real t ∈ [0, 1].

If these axioms are satisfied, then the agent is rational, and their preferences can be repre-
sented by maximizing expected utility w.r.t a utility function.

So what should m(·) look like in the above formulation of utility? EUT says that if m(·)
is concave, that is, agents have decreasing marginal returns for money, then this explains
risk-averse behavior. (And convex functions explain risk-seeking behavior.)

EUT Risk Aversion in Mechanism Design. There is a fair amount of work [8, 11, 12]
in this area, as EUT is most commonly used model.
The Calibration Theorem (Rabin [16]):

Gamble A

{
$11 w.p. 0.5

−$10 w.p. 0.5

Gamble B

{
$Y w.p. 0.5

−$100 w.p. 0.5

Suppose an agent rejects gamble A, deciding it has negative utility for them. Under EUT,
for what values of $Y will the agent also reject gamble B?

Answer: This rejection of gamble A bounds the curvature of a concave m(·) in a way such
that the only possible answer is to reject gamble B for all values of $Y , even if $Y = +∞.

Here’s another experiment that was actually run, called the Allais Paradox [1]. Which
gamble would you prefer?

Gamble A $1M w.p. 1

Gamble B


$1M w.p. 0.89

$5M w.p. 0.10

$0 w.p. 0.01

Most agents prefer gamble A, and EUT cannot explain this choice for any concave m(·).
This motivated cumulative prospect theory (CPT) [10, 17]. CPT accounts for three things
not seen in EUT:

• Probability weighting.

• Diminishing sensitivity.



• Loss aversion.

Probability weighting:

ui(bi,b−i) = yi(xi(bi,b−i)) ·m(vi − pi(bi,b−i)).

Suppose y(·) is convex, like x2. Then you value certain probabilities (0 and 1) the same, but
you underweight uncertain probabilities.

Probability Weighting in Mechanism Design. Recent work [3] has examined revenue-
optimal mechanism design with known probability weighting functions, unknown such risk
attitudes, and in a dynamic setting as well.

Diminishing sensitivity is with respect to the reference point (see next). The closer
to the reference point, the more sensitive.

Loss Aversion

Loss Aversion is the concept that losses weigh more heavily on an agent than gains. This
requires evaluating gains and losses relative to some reference point.

An alternative (think: action) is a one-dimensional random variable c. Given some in-
creasing utility function m : R→ R, faced with choice set C, an EU maximizer picks c ∈ C
to max E[m(c)].

Incorporating loss aversion: Given a reference point r ∈ R and parameters η ≥ 0, λ ≥ 1:

n(c | r) =

{
η(m(c)−m(r)) if m(c)−m(r) > 0

ηλ(m(c)−m(r)) otherwise

Faced with choice set C, a loss-averse decision maker picks c ∈ C to max E[m(c) + n(c | r)].
Then EUT is a special case. Think of m(·) as ‘material’ utility—m is the classical part, and
n is the gain/loss part. This is a good compromise between accuracy and tractability.

Let’s use this to explain the difference in small/large stakes risk aversion. Suppose m(c) = c,
η = 1, λ = 1.5. Let the reference point r refer to status quo wealth w. Then

m(w + x) + (w + x | r) = w + x+

{
x if x > 0

1.5 otherwise

The decision maker will accept the coin flip if and only if the ratio of gain to loss as at least
1.25.



The Endowment Effect (Kahneman Knetsch Thaler [9]): In a famous experiment, coffee
mugs were randomly allocated to half of the class. The following (not truthful but can be
made so) market-clearing mechanism was used. The students were asked for a list of prices:
“At a price of $p will you sell/buy?” to which they answered yes or no. Then this was used
to find a market-clearing price.

If we randomly allocate 22 mugs to 44 students, we should expect 11 trades. However,
in practice, we only see about 1-5 trades.

What we observe is that there’s a gap between buyers’ stated willingness to pay and sellers’
willingness to sell.

One explanation given is that people have transaction costs: it’s a hassle to trade. However,
if you use vouchers instead of mugs, you see exactly 11 trades.

It turns out that loss aversion with multiple dimensions can explain this. You have a refer-
ence point for the mug (whether you own it or not) and a reference point for money (how
much you start with). You would model this as maximizing∑

i

[mk(ck) + nk(ck | rk)]

for a variety of reference points rk.

The Endowment Effect in Mechanism Design. Recent work [2, 7] uses the endowment
effect to show the existence of Walrasian Equilibria beyond Gross Substitutes valuations.

The Winner’s Curse and Cursed Equilibrium

Recall the wallet game with interdependent valuations. Each agent i knows the amount
of money in their wallet, si, and their value is the amount of money in total in the room,
v =

∑
i si. Whoever wins the auction (has the highest bid) for the sum of wallets gets all

of the cash from the wallets. Let’s suppose we use an English (ascending) auction. For
simplicity, suppose si ∼ U [0, 1]. How should the players bid if they only know their own
signal? Let’s suppose there are only two agents: you and your opponent.

What would you bid? What is E[si] for all i?

Naive strategy: bid si + E[sj], where E[sj] = 0.5.

BNE strategy: Quit at 2si.

Crux: If you plan to quit at 2si, then if you get to that bid, you know your opponent



has sj ≥ si.

Cursed equilibrium (Eyster and Rabin [6]) asserts: Players correctly understand the marginal
distributions b−i | si and s−i | si, but under appreciate how b−i and s−i are related.

It’s as though with some probability χ, independent of s−i, all opponents play the un-
conditional distribution of b−i.

Let σ̄ denote the strategy of your opponents averaged over their types. That is,

σ̄−i(b−i | si) =
∑
s−i

Pr[s−i | si] · σ−i(b−i | s−i).

Then σ is a χ-cursed equilibrium if for all i, θi: for all bi such that σi(bi | si) > 0:

bi ∈ arg max
b′i

∑
s−i

Pr[s−i | si]
∑
b−i

ui(b
′
i,b−i, si, s−i) ·

[
χσ̄−i(b−i | si) + (1− χ)σ−i(b−i | si)

]
If χ = 0, this is just a BNE. If χ = 1, this is fully cursed—you operate as if everyone else is
playing an average over all types and ignoring their true type.

Another example: Seller has value equal to their private signal sS. Buyer has value 1.5sS.
The seller will accept a price p if and only if p ≥ sS. What price p should the buyer offer?
Say sS ∼ U [0, 1].

The BNE has p = 0. This is not what we see in practice.

The Winner’s Curse in Mechanism Design. Recent work [4] has examined designing
individually rational but cursed EPIC welfare- and revenue-optimal mechanisms (second-
best) and give a condition under which they approximate first-best welfare.

Other concepts: Quantal response [13, 14]: People choose actions randomly, but choose
higher-utility outcomes with high probability.

Level-k Thinking [5]: We assume that each agent performs a finite number of steps of
strategic reasoning.

• Level-0: Some default nonstrategic distribution of play (perhaps uniform).

• Level-1: Best respond to level-0 players.

• · · ·

• Level-k: Best respond to level k − 1, or possibly levels {0, 1, . . . , k − 1}.
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