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1. Introduction

A large amount of scarce resources, ranging from broadcasting rights to scarce medical interventions, is periodically
allocated by governments or other public institutions. Allocation methods can be generally classified into two categories:
(i) market mechanisms, if objects are exchanged for money (e.g., auctions or posted prices); (ii) non-market mechanisms,
if objects are allocated free of charge (e.g., lotteries and priority lists based on observable characteristics).2

Market mechanisms are optimal if maximizing welfare of the recipients is the underlying goal of the allocation. Under
a set of standard assumptions (i.e., when income effects are absent) Pareto-efficiency alone mandates that the resources be
assigned to those who are willing to pay the most for them. Payments must be requested in order to extract information on
the willingness to pay. Nevertheless, non-market mechanisms, often coupled with resale-bans, are used in a large number
of circumstances, ranging from the allocation of intensive care facilities to the allocation of tickets for concerts.3

Two major questions arise. Under which conditions are non-market mechanisms preferable to market mechanisms? Why are
non-market mechanisms so popular? I develop a theory that addresses both of them.

In my model the objective of the designer can be different from welfare or revenue maximization (e.g., maximizing the
number of lives saved in the context of allocating scarce medical resources). As a consequence, non-market mechanisms may
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also be optimal. In particular, market mechanisms are optimal when willingness to pay for the scarce resource is positively
associated to those unobservable traits of the agents which are valued by the designer (e.g., effectiveness of the treatment
in the context of allocating scarce medical resources). Conversely, the use of non-market mechanisms may be optimal when
the statistical dependence between the characteristics valued by the designer and willingness to pay, coupled with binding
incentive constraints, prevents the designer from extracting any useful information. Banning resale is necessary in this case.
Otherwise, agents with higher willingness to pay would buy the objects from the recipients, upsetting the initial allocation.4

The contribution of this paper is twofold, in response to the two questions above. First, and foremost, my analysis
provides guidance on selecting among market and non-market mechanisms. For any given policy objective, the normative
question of which type of mechanism should be used becomes an empirical one. A take away is that market mechanisms
may be optimal even in cases where the allocation objective is not directly related to standard economic welfare. This point
has substantial policy implications but, somewhat surprisingly, it has never been formally stated in the economic literature
(at least to my knowledge). For example, consider the allocation of scarce medical resources. The medical profession, and
policy-makers alike, appear to be strongly against the idea of assigning scarce medical resources to the highest bidder.5

Instead, need-based criteria, such as saving the highest number of lives, are classic and long-standing rationing principles.6

I show that opposition to market mechanisms cannot be motivated solely by arguing that the underlying objective of
the allocation is different from welfare or revenue maximization. Such considerations also apply to a number of different
allocation problems. For instance, my analysis is relevant for the allocation of places in selective state-funded schools.7

The use of non-market mechanisms has been previously motivated appealing to moral principles (e.g., Calabresi and
Bobbitt, 1978; Walzer, 1983), or to psychological externalities (e.g., the sentiment of repugnance in Roth, 2007). The second
contribution of this paper is to offer a new positive theory that may help explaining observed variation in the choice of
mechanisms used to allocate scarce resources. Non-market mechanisms prevail if extracting information on willingness to
pay cannot help the designer to achieve its goal, either because of incentive problems or because willingness to pay is
totally uninformative. However, whether this force has substantial explanatory power (e.g., it explains why radio-spectrum
is auctioned to the highest bidder, while places in selective schools are not rationed using prices) is an empirical question
that lies outside the scope of this paper.

The formal apparatus is standard. Agents have linear utility in money and their willingness to pay is determined by a set
of observable and unobservable characteristics. The designer has an interest in assigning objects to individuals with certain
characteristics, some of which may be private information. Because the designer can only condition the final allocation on
willingness to pay, relevant incentive constraints are one-dimensional and the mechanism design problem can be solved
using standard techniques (following Myerson, 1981).8 In particular, incentive constraints imply that the designer must
select an allocations that offers, to any given agent, the object with higher probability the higher is his willingness to pay.
Therefore, even though willingness to pay contains relevant information, non-market mechanisms are optimal when higher
willingness to pay is associated with lower expected payoff to the designer.9 In this case the designer would like to sort
types based on willingness to pay, giving priority to lower types, but the best she can do is to condition the allocation on
observable characteristics only.10

One important feature of my model is that the designer is only capable of extracting information on the willingness to
pay. This is the consequence of two assumptions. First, I assume that objects are identical. If objects were heterogeneous,
non-market mechanisms could be used to extract information (e.g., see Hylland and Zeckhauser, 1979; McAfee, 1992, and
Budish, 2011). Second, I assume that the designer cannot ask the agents to engage in costly activities, such as spending
time in line (see Condorelli, 2012). While these assumptions simplify the analysis substantially, my main insights do not
hinge on them. First, the conclusion that mechanisms that do not extract any information can be optimal because of binding
incentive constraints would still be valid in a setting in which the designer had more instruments to extract information.
Second, even if objects were heterogeneous and the designer was able to screen agents by having them to exert a costly

4 Throughout the text I use the term “willingness to pay” even though the term “ability to pay” is often used in the context of specific applications.
Willingness to pay seems more accurate, given that the two terms differ only in cases where an individual faces hard budget constraints. Someone could
be willing to pay but unable to pay only if the liquidation value of his wealth (plus the debt he could obtain with no collateral) exceeds the value of the
resource to him. Casual empiricism suggests that this is unlikely in most cases of interest.

5 For example, surveying methods of allocation for scarce medical interventions, Persad et al. (2009) state: “we do not regard ability to pay as a plausible
option for the scarce life-saving interventions we discuss”. Resistance to the introduction of monetary markets for organs for transplant is also documented
in Becker and Elias (2007) and in Roth (2007).

6 For example, this principle is behind governmental contingency-plans for the allocation of influenza vaccine (see Emanuel and Wertheimer, 2006) and
responses to bioterrorism (see Phillips, 2006).

7 In the UK admission to selective schools is often based on merit only. See for example the School Admissions Code from the UK Department of Education.
8 Two types of a given agent with the same willingness to pay cannot be screened because they have the same preferences over object-money bundles.
9 For instance, consider the allocation of influenza vaccines. The value of vaccinating an individual depends, in addition to observable characteristics

that make him more prone to contract the disease (e.g., age), on the (unobservable) number of people with which he has close contact during his typical
workday. However, the willingness to pay for a vaccine, especially in case of a high-risk disease, will be positively correlated to individual wealth and
income. In turn, income and wealth are likely to be inversely correlated with the number of people with which an individual might be exposed in his
workday. Hence, a non-market mechanism is likely to be optimal in this case.
10 The fact that objects are randomly assigned does not mean that the designer is ex-post indifferent among recipients. This explain why resale must

be banned. Allowing resale induces positive correlation between willingness to pay and ownership, something that the designer wants to avoid when
non-market mechanisms are optimal.
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effort, pure market mechanisms would remain optimal in many cases of interest (e.g., if the objective of the designer was
positively correlated with willingness to pay but negatively correlated with willingness to exert the non-monetary cost).

My techniques are standard but nevertheless my work fills a substantial conceptual gap in the literature. Although
there are two large bodies of literature that study properties of market and non-market mechanisms independently, few
efforts have been devoted to explaining the existence of both types of mechanisms in the same economic environment.11

Essentially since Gale and Shapley (1962), virtually an entire literature on market-design without money treats the absence
of transferable utility as an exogenous restriction.

The most closely related paper is Che et al. (2013). They compare market and non-market allocation methods for the
efficient assignment of a unit mass of goods, to a larger set of wealth constrained agents. In Che et al. (2013) the goal of
the designer remains that of allocating the objects to the agents with the highest willingness to pay. Therefore, the channel
through which non-market mechanisms emerge is different. In Che et al. (2013) lotteries may outperform markets when
agents with high willingness to pay are severely budget constrained. However, allowing resale is always welfare-enhancing.
In my model, screening based on the willingness to pay may not be the objective of the designer. Indeed, non-market
mechanisms are optimal in my model only when the designer is not interested is assigning the object to the agents with
the highest willingness to pay. Furthermore, banning resale is always useful.12

Other two papers are closely related: Fernandez and Gali (1999) and Esteban and Ray (2006). Fernandez and Gali (1999)
compare the performance of markets and tournaments (i.e., non-market mechanisms where agents engage in costly signal-
ing) as allocation mechanisms in an economy with borrowing constraints. In Esteban and Ray (2006) a government seeks
to allocate limited resources to productive sectors. However, both sectoral productivity and wealth are privately known. The
government, even if it seeks to assign resources to the most productive sectors, may be confounded by the possibility that
both high wealth and true economic desirability create loud lobbying.13

My paper is also related to other applied mechanism design papers, in particular to works that examine settings with
budget constrained agents (e.g., Che and Gale, 1998; Pai and Vohra, 2009, and Dobzinski et al., 2012) and with multidimen-
sional signal spaces and lower dimensional policy spaces (e.g., McAfee et al., 1988; Armstrong, 1996; Rochet and Chone,
1998; Jehiel and Moldovanu, 2001, and Deneckere and Severinov, 2009). The simple structure of my type-space sidesteps
most of the implementation difficulties that emerge in this literature.

2. The model

There are k � 1 indivisible and identical objects and n risk-neutral agents. The objects are scarce, n > k, and available in
fixed quantity. Let N ≡ {1, . . . ,n} denote the set of agents. Agents are heterogeneous in terms of observable and unobservable
characteristics. For all i ∈ N , let zi be a real vector of observable characteristics, which are commonly known, and let
θi ∈ Θi be the real vector of unobservable characteristics, which are private information and drawn from a convex set.
Write θ = (θ1, . . . , θn), Θ = ×iΘi and let θ−i and Θ−i take the usual meaning. Let Fθi denotes the prior distribution of the
unobservable variables, conditional on the observable characteristics of agent i. Assume that unobservable characteristics
are always distributed independently across agents.

If agent i obtains one object and pays mi his utility is w(zi, θi)−mi , where w is some commonly known function. Write
wi(θi) ≡ w(zi, θi). Agents have unit demand and obtaining more than one object provides no extra benefit. If i obtains
no object and pays mi , his utility is −mi . The term wi(θi) is the willingness to pay of agent i of type θi . Denote wi the
corresponding random variable, F wi its distribution and f wi the density. Assume that f wi has finite expectation, is strictly
positive in some interval W i = [wi, wi) and equal to zero elsewhere.

I model the allocation as a standard mechanism design problem. The timing is as follows: (1) The designer proposes a
mechanism. A mechanism is an arbitrary normal-form game. An outcome of the mechanism consists of (i) a random as-
signment of objects to agents and (ii) a vector of expected payments from agents to the designer. (2) Agents simultaneously
and independently decide whether or not to participate in the mechanism. If an agent decides to opt out he makes no pay-
ment and obtains no object. (3) Participating agents play the mechanism under incomplete information about each others’
types.14 (4) The outcome of the mechanism is implemented and no further interaction takes place thereafter.

A deterministic assignment of the objects is a vector (p1, . . . , pn) where pi ∈ {0,1} for all i ∈ N and
∑

i pi � k. The
designer is risk neutral and her utility from a given assignment is:∑

i

v(zi, θi)pi,

11 The analysis of market mechanisms under incomplete information is often labeled “auction theory” (see Krishna, 2002; Milgrom, 2004 or Klemperer,
2004). The major strand of the literature that examines non-market mechanisms is the one studying two-sided matching (see Roth and Sotomayor, 1990).
12 My main results would not be substantially affected by the presence of budget constrained agents, if the budgets were independent of other unobserved

characteristics of the agents. On the one hand, when non-market mechanisms are optimal in the present model, they would be also optimal in the presence
of budget constrained agents. On the other hand, when market mechanisms are optimal in the current model, using non-market mechanisms and allowing
resale would sometimes be preferable with budget constraints agents (a complete characterization would follow Che et al., 2013).
13 Recently, Mestieri (2010) studies the optimal design of an educational system in an environment where borrowing constraints and private information

make it difficult to separate ability from willingness to pay.
14 Because participation of all agents is not an issue, I omit to specify that the designer must offer a mechanism which depends on participation decisions.



D. Condorelli / Games and Economic Behavior 82 (2013) 582–591 585
where v is some commonly known function. For ease of notation, write vi(θi) ≡ v(zi, θi) and call vi(θi) the value of an
agent i of type θi to the designer. I assume that the corresponding random variable, vi , is well behaved.15

This mechanism design objective, which I call value maximization, is general and can accommodate different specifica-
tions. The designer maximizes utilitarian welfare if vi = wi for all i ∈ N . In this case value is willingness to pay and the
designer maximizes the sum of utilities.16 My model, however, is interesting only in cases where value cannot be perfectly
inferred from willingness to pay and observable characteristics. Suppose, for instance, that agents are heterogeneous in both
their value for an object, θ1, and their opportunity cost of money, θ2, and the designer seeks to maximize value. In this case

wi(θ
1
i , θ2

i ) ≡ θ1
i

1+θ2
i

and vi(θ
1
i , θ2

i ) ≡ θ1
i . If capital markets are imperfect, and interest rates are heterogeneous, agents with

higher value may exhibit lower willingness to pay. More generally, a model where the willingness to pay is a noisy signal
of value is very natural in a wide range of practical applications, ranging from the allocation of places in selective schools
to the allocation of licenses to operate a regulated business (when the objective of the designer is to maximize the value of
the available resources).17

My model is standard but two assumptions, which have not been so far discussed, deserve explicit mention. First, the
designer has no way, before he proposes a mechanism, of extracting any information other than that already conveyed
by the observable characteristics of the agents. This assumption is not crucial. We can always think of the distribution of
types as conveying any residual uncertainty. For instance, when considering the allocation of scarce medical resources, the
observable characteristics of the agents should already convey any information that it might have been extracted trough
diagnostic tests.

Second, agents cannot engage in post-allocation trading of the objects. This assumption is not innocuous, because the
set of implementable outcomes shrinks when resale is permitted (see Zheng, 2002) and therefore the designer weakly
benefits from banning resale. At one extreme, if resale is allowed and renegotiation among agents is frictionless, the only
implementable outcome is one where the objects are assigned to the agents with the highest willingness to pay. However,
for the applications at stake, it seems plausible to grant the designer with the power to ban resale. In fact, resale-bans are
often observed in practice when non-market mechanisms are employed.

3. Direct mechanism design

Appealing to the revelation principle, the designer can restrict attention to truthful direct revelation mechanisms where
everyone obtains a payoff greater than zero. A direct mechanism is a game where each player submits a report about his
private information and an outcome is determined as a function of the reports. Hence a direct mechanism 〈p,m〉 is a set
of integrable functions {pi : Θ → [0,1]; mi : Θ → IR}n

i=1, where for all θ ∈ Θ the feasibility condition
∑

i pi(θ) � k is met.
Because agents have unit demand the designer restricts attention to mechanisms where pi(θ) � 1 for each θ ∈ Θ .

A direct mechanism is incentive compatible if and only if revealing the true type is optimal when everyone else does so,
and every agent always obtains a payoff greater than or equal to zero (i.e., the payoff from the outside option). Formally,
a direct mechanism is incentive compatible if, and only if, for each i ∈ N and θi ∈ Θi :

Eθ−i

[
pi(θi, θ−i)wi(θi) − mi(θi, θ−i)

] = max
θ∈Θi

Eθ−i

[
pi(θ, θ−i)wi(θi) − mi(θ, θ−i)

]
� 0. (1)

The utility functions of two types θ ′
i and θ ′′

i such that wi(θ
′
i ) = wi(θ

′′
i ) are the same and represent the same prefer-

ences over outcomes. As a consequence, the designer cannot obtain a truthful revelation of the information vector if the
mechanism assigns outcomes with different utility index to two different types of the same player who both have the
same willingness to pay. Otherwise, both types would just report the type of the two that provides the highest utility.
Building on this observation, the designer restricts attention to direct mechanisms whereby pi(θ

′
i , θ−i) = pi(θ

′′
i , θ−i) and

mi(θ
′
i , θ−i) = mi(θ

′′
i , θ−i) for any i ∈ N , θ−i ∈ Θ−i and θ ′, θ ′′ ∈ Θi such that wi(θ

′
i ) = wi(θ

′′
i ).18 In light of this, a direct

mechanism 〈p,m〉 can be written as a mapping from W ≡ W1 × · · · × Wn into outcomes. Let w−i indicate an element of
× j �=i W j .

Define the interim allocation as Pi(wi) = Ew−i [pi(wi, w−i)]. The following result, which is well known and stated without
proof, characterizes implementable allocations.19

15 There is no need, for our purposes, to model explicitly how Fi , vi and wi depend on zi . As a consequence the optimal mechanism will depend on Fi ,
vi and wi , rather than on the primitives.
16 It is well known that a first best can be implemented in this case using a Vickrey–Clarke–Groves mechanism (equivalently, a k + 1-price auction with

no reserve price). The optimal mechanism is a market mechanism.
17 For example the FCC’s main spectrum management goal is not to assign broadcasting rights to the firms that can profit the most from them, but “to

encourage the highest and best use of spectrum” (see the FCC Report of the Spectrum Efficiency Working Group, published on November 15 2002). The fact
that willingness to pay for spectrum may not be perfectly aligned to its social value is acknowledged, for instance, in McMillan (1995).
18 Incentive compatibility requires that types with the same willingness to pay obtain the same expected utility. There is no loss of generality in assuming

that both the ex-post allocation and payment rules coincide.
19 See for example Krishna and Maenner (2001).
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Lemma 1. Take any p = {pi : W → [0,1]}n
i=1 . There exists m such that 〈p,m〉 is an incentive compatible direct mechanism if and

only if for all i ∈ N:

Pi
(

w ′) � Pi
(

w ′′) for all w ′, w ′′ ∈ W i such that w ′ � w ′′. (2)

While Lemma 1 is silent about whether or not the designer is allowed to run a budget deficit, standard results in mecha-
nisms design show that this is not necessary in this environment. Every outcome that is implementable can be implemented
without any payment from the designer to agents. Moreover, every implementable outcome can be implemented using a
direct mechanism where reporting the true type is a weakly dominant strategy.20

4. Market and non-market mechanisms

The distinction between market and non-market mechanisms is made on the basis of equilibrium outcomes. Define the
interim payment of a given mechanism as Mi(wi) = Ew−i [mi(wi, w−i)]. For any incentive compatible mechanism, we must
have, for all i ∈ N:

M(wi) = Mi( wi) + wi Pi(wi) − wi Pi( wi) −
wi∫

wi

P i(x)dx,

where Mi( wi) is an arbitrary constant, less than or equal to wi Pi( wi) in order to ensure a non-negative payoff from
participation. Because the designer is not interested in raising money we can always set Mi( wi) = 0. I adopt the following
convention:

1. A market mechanism is one where, for all i ∈ N , Mi(wi) > 0 for all wi ∈ ( wi, wi] such that P (wi) > 0 (i.e., all those who
expect to obtain an object also expect to pay a positive amount of money).

2. A non-market mechanism is one where Mi(wi) = 0 for all i ∈ N (i.e., all objects are always assigned free of charge).21

3. An hybrid mechanism is a mechanism that does not fit into any of the two categories above.

The definition of market mechanisms encompasses, among others, Vickrey–Clarke–Groves mechanisms, revenue maximizing
auctions, and also pure posted prices.22 The set of non-market mechanisms includes, prominently, lotteries and priority lists
based on observable characteristics (e.g. point systems). A posted price mechanism where unsold objects are randomized
among the remaining agents is an example of an hybrid mechanism.

Setting Mi( wi) = 0 implies that an agent of type wi > 0 earns a strictly positive payoff if Pi( wi) > 0 (i.e., he expects
to obtain an object). Therefore, the designer could implement the same allocation by asking an extra lump-sum payment
of Pi( wi)wi to every agent. Imposing a participation fee of this sort would also be helpful in discouraging speculators.
My definitions do not depend on this normalization. A non-market mechanism could be defined as a mechanism where
the allocation does not depend at all on willingness to pay, that is Pi(w ′) = Pi(w ′′

i ) for all w ′, w ′′ ∈ W i . Similarly, a market
mechanism could be defined as one where Pi( wi) < Pi(w ′) for all w ′ ∈ W i \ wi .

5. Results

The designer selects a feasible direct mechanism 〈p,m〉 that maximizes the following objective function subject to
incentive compatibility constraints in (1):

Eθ

[
n∑

i=1

pi
(

w1(θ1), . . . , wn(θn)
)

vi(θi)

]
. (3)

Under complete information the designer attains a first best. She maximizes the objective in (3) point-wise by assigning
the objects to the k agents with the highest values. In general, however, even the presence of a small uncertainty impairs the
ability of the designer to achieve a first-best outcome.23 If there is any uncertainty left, conditional on knowing willingness
to pay, about the identity of the k agents with the highest values, then a first best cannot be attained.

20 Both results can be achieved using the Vickrey payment rule: mi(w) = pi(w)wi − ∫ wi
wi

pi(xi , w−i)dxi .
21 Mi(wi) = 0 implies that Mi(wi) = 0 for all wi ∈ ( wi , wi ].
22 In Che et al. (2013) a market mechanism is one where the objects are sold at the market-clearing price. Hence, the set of market mechanisms is larger

according to my definition.
23 The result is not surprising. Jehiel and Moldovanu (2001) show that it is generically impossible to implement an ex-post efficient outcome when

individual types are multidimensional.
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Proposition 1. Assume that (i) there exist θ, θ ′ ∈ Θi such that wi(θ) = wi(θ
′) and vi(θ) > vi(θ

′); (ii) there exists j with θ ′′ ∈ Θ j
such that vi(θ) > v j(θ

′′) > vi(θ
′); (iii) there exist a set of type profiles such that, with positive probability, a single object must be

allocated to either i or j. Under the stated assumptions a first-best outcome cannot be achieved.

Proof. Assumptions (i) and (ii) imply that there is uncertainty, conditional on the willingness to pay, about who, between i
and j, should get the object. Condition (iii) ensures that there are profiles of values for which, at the first best, there is one
object that must be allocated to either i or j. Because the designer cannot discriminate between types θ and θ ′ of player i,
the fact that a player j exists such that the designer might prefer j over i whenever i is of type θ implies that a first best
cannot be achieved. �

In light of the impossibility result above, I now look for second-best mechanisms (i.e., mechanisms that maximize ex-ante
the objective of the designer subject to incentive compatibility constraints). A key step consists in rewriting the objective
function in a way that makes it manageable using standard techniques.

Lemma 2.

Eθ

[
n∑

i=1

pi
(

w1(θ1), . . . , wn(θn)
)

vi(θi)

]
= Ew

[
n∑

i=1

pi(w)E[vi|wi]
]
.

Proof. Follows from the law of iterated expectations. �
I can now solve the design problem, adapting to this environment the ironing technique developed in Myerson (1981).

Definition 1. For all x ∈ [0,1] let:

Hi(x) =
x∫

0

E
[
vi

∣∣ wi = F −1
wi

(y)
]

dy, Gi(x) = conv
〈
Hi(x)

〉
, gi(x) = G ′

i(x),

where conv〈·〉 denotes the convex hull of the function.24 The priority function of i is:

λi(wi) = gi
(

F wi (wi)
)
.

The intuition behind this construction is simple. The value of assigning an object to an agent with willingness to pay
wi is E[vi |wi]. When the conditional expected value is increasing in wi the designer will always want to allocate an object
to a type w ′′

i , whenever she allocates it to a type w ′
i with w ′

i < w ′′
i . Therefore, incentive constraints are not binding and

priority in allocation can coincide with E[vi |wi]. However, when E[vi |wi] is decreasing in a certain interval, the designer
must take into account that, if she assigns a certain priority to a type w ′

i , she cannot assign lower priority to types having
higher willingness to pay. Hence, she will optimally pool together types in the interval, assigning to all of them the same
average priority.

Theorem 1. Any incentive compatible mechanism that maximizes (3) assigns the objects to the k agents with the highest priority levels.
Ties among agents can be broken arbitrarily (e.g., via an equal chance lottery, which also ensures equal treatment of equals).

Proof. The designer’s problem has been reduced to the following:

max
{pi : [wi ,wi)→[0,1]}n

i=1

Ew

[
n∑

i=1

pi(w)E[vi |wi]
]

subject to:

n∑
i=1

pi(w) � k ∀w ∈ IRn;

Pi(w) � Pi
(

w ′) ∀i ∈ N, ∀w, w ′ ∈ W i: w � w ′.

24 Gi is the highest convex function in [0,1] such that Gi(x) � Hi(x) ∀x. Where the derivative of Gi is not defined, we extend it using the right or left
derivative.
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The candidate solution satisfies the first constraint above. To prove that the second is also satisfied, note that λi is the
derivative of a convex function and therefore it is monotonically increasing. Then, for all w−i , p(w) is increasing in wi ,
which implies that Pi is also increasing.

Next, sum and subtract Pi(wi)λi(wi) inside the objective function and rewrite:

n∑
i=1

Ewi

[
Pi(wi)λi(wi) + Pi(wi)

(
E[vi |wi] − λi(wi)

)]
.

Consider the second term of this expression for every i:

wi∫
wi

P i(wi)
[
E[vi |wi] − gi

(
F wi (wi)

)]
f wi (wi)dvi .

Integrating it by parts:

Pi(wi)
[

Hi
(

F wi (wi)
) − Gi

(
F wi (wi)

)] ∣∣wi

wi
−

wi∫
wi

[
Hi

(
F wi (wi)

) − Gi
(

F wi (wi)
)]

dPi(wi).

Consider the first term of the above. It is equal to zero: Hi(0) = Gi(0) and Hi(1) = Gi(1), because Gi is the convex hull of the
continuous function Hi and thus they coincide at endpoints (the continuity of Hi follows from assuming an atomless F wi ).

With this in mind the objective function becomes:

n∑
i=1

Ew
[

pi(w)λi(wi)
] −

n∑
i=1

wi∫
wi

[
Hi

(
F wi (wi)

) − Gi
(

F wi (wi)
)]

dPi(wi).

The candidate solution maximizes the first sum as it puts all the probability on the players for whom λi(wi) is maximal.
To conclude the proof, we can show that the second term is equal to zero. It must always be non-negative, as ∀wi Hi � Gi .
That it is equal to zero, follows because Gi is the convex hull of Hi and so, whenever Hi(F wi (wi)) > Gi(F wi (wi)), then Gi
must be linear and hence Pi(wi) must be constant. That is, if Gi(x) < Hi(x), G ′′

i (x) = g′
i(x) = 0 and λi(wi) will be a constant

in a neighborhood of wi . �
The optimal mechanism takes the form of a ranking among agents based on priority functions that are weakly increasing

in willingness to pay. Any incentive compatible mechanism must satisfy this requirement. The theorem adds to the above
observation by showing how priority functions are constructed in this context.

Corollary 1. If E[vi |wi] is weakly increasing in wi then λi(wi) = E[vi |wi].

Proof. Observe that Hi is convex and so Gi(x) = Hi(x) for all x ∈ [0,1]. �
When E[vi |wi] is weakly increasing the optimal mechanism gives priority to the agents with the highest conditional

expected values. In other words, if there is positive regression dependence between value and willingness to pay, it is profitable
for the designer to condition the allocation on willingness to pay. Because, for each given agent, the mechanism assigns an
object with higher probability the higher is the willingness to pay, incentive constraints are not binding.

When E[vi |wi] is strictly increasing and no agent is guaranteed an object given his observable characteristics, all types of
agents who expect to obtain an object also expect to make a positive payment. Hence, the optimal mechanism is a market
mechanism.25

Corollary 2. Assume that E[vi |wi] is strictly increasing for all i ∈ N. Assume that for each i ∈ N there exist a set S ⊆ N of k individuals
with the property that for all j ∈ S there exists some w ′

j ∈ W j such that E[v j |w ′
j] > E[vi |wi]. Then, the optimal mechanism is a

market mechanism.

Proof. Let ŵi = inf{w ∈ W i: Pi(wi) > 0} for all i. Then note that Pi(wi) must be strictly increasing in a right-neighborhood
of ŵi , unless the set above is empty. It follows that Mi(wi) > 0 for all wi > ŵ . �
25 While it is easy to identify whether a mechanism is a market or a non-market mechanism in each specific case, a tighter characterization is difficult to

attain without imposing any further restriction on the type space and on the distributions of types.
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Agents have a common support of willingness to pay if wi = w j and wi = w j for all i, j ∈ N . Agents are ex-ante

symmetric if F wi = F w j and, in addition, vi(θi) is distributed as v j(θ j) for all i, j ∈ N .26 If agents are ex-ante symmetric and
E[vi |wi] is weakly increasing, then any standard auction without a reserve price (i.e. an auction that allocates the objects to
the agents with the highest willingness to pay) is an optimal mechanism.27 In this case, achieving an ex-post Pareto efficient
allocation and value maximization are not in contrast. Therefore, the designer need not prohibit resale of the objects. When
agents are ex-ante asymmetric but have a common support of willingness to pay, the object will be assigned through an
auction which will favor agents that are observably strong, in the sense of being more likely to have higher value conditional
on having the same willingness to pay.28

The above result has policy implications. No matter how value is actually defined, whenever a positive dependence be-
tween value and willingness to pay can be established empirically, using non-market mechanisms is a suboptimal policy
choice. This suggests that resistance against the use of market mechanisms in some areas of governmental action (e.g., al-
location of scarce medical resource) cannot be justified purely by claiming that the objective of the allocation is different
from revenue or welfare maximization. One further implication is that auctions should be less strongly favored in cases
where the resource or asset has a common value (to the designer). At one extreme, in case the resource being allocated
has a common value, all mechanisms are equivalent and a lottery represents the simplest way to allocate the scarce re-
source.

Corollary 3. If E[vi |wi] is weakly decreasing then λi(wi) = E[vi].

Proof. Hi is concave and so Gi is a straight line from Hi(0) = 0 to Hi(1) = E[vi]. �
If, for some agent, the individual value depends negatively on willingness to pay, then the lower is his willingness to

pay, the higher is the priority that the designer would want to assign him. However, an allocation of this sort is not im-
plementable due to incentive constraints. The second best in this case is to condition the allocation only on observable
characteristics and assign the objects to the agents with the highest unconditional expected values E[vi]. The following corol-
lary requires no proof.

Corollary 4. If E[vi|wi] is weakly decreasing for all i ∈ N, then the optimal mechanism is a non-market mechanism.

If agents have different expected values then the optimal mechanism is a priority list where agents are ranked only on
the basis of their observable characteristics. If agents have all the same expected value, all objects can be assigned through
an equal chance lottery. Banning resale is necessary to prevent post-allocation exchanges, which would reduce the value of
the allocation for the designer.

The next example presents a simple generic case in which E[vi |wi] is monotone decreasing and is helpful in providing
more intuition on when value and willingness exhibit a negative statistical dependence.

Example 1. Suppose that agents are heterogeneous both in their value for the objects, νi , and in their opportunity cost of
money, ri , and the designer seeks to maximize value. Let wi(νi, ri) ≡ νi

1+ri
and vi(νi, ri) ≡ νi . Let the support of (νi, ri) be

the triangle Xi defined by νi � 2, 1 � νi
1+ri

� 2 and 1 + ri � 3
2 νi − 2 (see Fig. 1). Let fνi ,ri = 1 in Xi (and zero elsewhere).

Fig. 1. Type space in Example 1.

26 A sufficient condition is that zi = z j and Fθi = Fθ j for all i, j ∈ N .
27 As one would expect, when the designer is welfare maximizing then vi = wi and market mechanisms are optimal in light of corollary 2.
28 The practice of favoring new-entrants over incumbents, whose willingness to pay is often inflated by preemptive motives, is common in spectrum

auctions (e.g., see Hoppe et al., 2006).
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After some computations:

E[vi|wi] = 16 − 64wi + 76w2
i

12 − 48wi + 45w2
i

.

This function is strictly decreasing for 1 � wi � 2. Therefore, if all agents are symmetric, then the optimal mechanism is a
lottery.

Corollary 5. If E[vi |wi] is weakly decreasing in some interval (w, w ′) ⊂ W i , then λi is constant in (w, w ′).

Proof. Note that Hi is concave in (F wi (w), F wi (w ′)) because for a in (F wi (w), F wi (w ′)), H ′(a) = E[vi |wi = F −1
wi

(a)]. Since
Hi is concave in (F wi (w), F wi (w ′)), Gi will be a straight line in that interval. It follows that λi is constant in (w, w ′). �

If s E[vi |wi] is not monotonic for all agents, then the optimal mechanism may be a market mechanism or a hybrid
mechanism.

Corollary 6. Assume that agents are ex-ante symmetric and E[vi |wi] is non-monotonic. (i) If E[vi |wi] is weakly decreasing in a right-
neighborhood of wi , then the optimal mechanism is a hybrid mechanism. (ii) If E[vi |wi] is strictly increasing in a right-neighborhood
of wi then the optimal mechanism is a market mechanism.

Proof. For (i) observe that because agents are symmetric if the priority function is constant in a right-neighborhood of
wi , then there is always the possibility that some player obtains an object without making any payment. Hence, for some
w ′

i > wi , we have P (w ′
i) > 0 and M(w ′

i) = 0. Because E[vi |wi] is non-monotone there exists an interval of the type space in
which λi is strictly increasing and therefore there is at least an interval of the type space such that for all wi in that interval
P (wi) > 0 implies M(w ′

i) > 0. To prove (ii) consider that, if the priority function is increasing in a right-neighborhood of wi ,
then there exists no w ′

i > wi such that P (w ′
i) > 0 and M(w ′

i) = 0. �
An optimal mechanism in case (i) may be practically implemented as follows. Allocate the objects to the highest bidders

and impose a minimum bid. Randomize the remaining goods at no cost among those that did not bid above the minimum
bid. This mechanism is optimal if agents are ex-ante symmetric and E[vi |wi] is first decreasing and then increasing. The
optimal mechanism in this case has the flavor of ticket pricing for theaters in London or NYC. Tickets are first sold at higher
prices to those that do not want to risk missing the show. If the show is not sold-out, remaining tickets are sold on a last
minute basis at a substantially discounted price.29

An optimal mechanism in case (ii) may be practically implemented as follows. Allocate the objects to the highest bidders
but impose a maximum bid. In case of a tie, which will occur with positive probability at the maximum bid, randomize
the objects. A mechanism of this type is optimal if agents are ex-ante symmetric and E[vi |wi] is first increasing and then
decreasing. This optimal mechanism is practically equivalent to a mechanism where the objects are sold at a price which is
below the market price, and where excess demand is rationed using a lottery.30 This type of mechanisms is used in practice
for the allocation of a wide variety of public resources, ranging from housing to hunting and fishing rights (see Scrogin and
Berrens, 2003).

In general, an optimal hybrid mechanism under asymmetry may take a number of different forms. One further example
is the following. Allocate the objects to all the members of a first group and sell the remaining objects to the highest
bidders in a second group. This mechanism might be optimal if the minimum value for an agent in the first group is above
the maximum for an agent in the second group and E[vi |wi] is increasing for agents in the second group.

6. Conclusions

In my model, a number of identical objects are allocated to a set of heterogeneous agents. The designer seeks to attribute
the objects to agents with specific unobservable characteristics (i.e., seeks to maximize value), but she can only condition
the allocation on willingness to pay.

Solving the above mechanism design problem, I provide one main insight. Both market and non-market allocations can be
optimal, depending on the regression dependence between the traits that are valued by the designer and willingness to pay.
Lotteries, priority lists or other hybrid mechanisms dominate pure market mechanisms if higher willingness to pay signals
lower expected value, at least in some range of the type space. In this case incentive constraints prevents the designer

29 See “The Dynamics of Pricing Tickets for Broadway Shows” by Hal Varian (NYTimes 2005-1-13).
30 The theoretically optimal mechanism would require the designer to run an auction with a maximum bid rather than using posted prices. This is

a consequence of the fact that the designer wants to always assign all the objects, even in the unlikely event that there is no excess demand at the
maximum bid.
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from conditioning the allocation on willingness to pay in a way that is beneficial to her. Conversely, market mechanism are
optimal when a positive dependence between value and willingness to pay can be established.

I draw one substantial policy implication from this analysis. Even though the stated criteria for rationing certain goods
might be unrelated to willingness to pay of the potential recipients, as far as optimality requires conditioning the allocation
on private information, the use of market mechanisms might help achieve better outcomes.

My analysis may also have positive content. Auctions and other market mechanisms are, and have been, widely used for
the allocation of rights to exploit scarce natural resources (e.g. spectrum, oil fields, timber, etc.) and for the privatization
of state owned assets. My theory is consistent with this observation in the sense that one should expect a strong positive
association between the ability to generate social value from a resource and the willingness to pay of potential buyers.
Furthermore, it may be argued that a strong case in support of using market mechanisms for allocating scarce medical
resources has never been made, because the unobserved individual characteristics that determine the effectiveness of a
treatment are unrelated to willingness to pay.31 However, more generally, whether or not the statistical dependence between
value (however defined) and willingness to pay may explain the adoption of market or non-market mechanisms in some
domains of policy intervention is an open empirical question that cannot be satisfactorily settled here.
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