Single-Parameter Optimal Utility Maximization

The following is based on [1].

Bayesian Stages and Interim Rules

interim: Values v_i have been drawn; *i* only knows their own valuation, and thus the updated prior $\mathbf{F}|_{v_i}$.

Definition 1. We define the *interim* allocation and payment rules in expectation over the updated Bayesian prior given i's valuation:

 $x_i(v_i) = \Pr_{\mathbf{F}}[x_i(\mathbf{v}) = 1 \mid v_i] = \mathbb{E}_{\mathbf{F}}[x_i(\mathbf{v}) \mid v_i] \quad \text{and} \quad p_i(v_i) = \mathbb{E}_{\mathbf{F}}[p_i(\mathbf{v}) \mid v_i].$

Our definition of Bayesian Incentive-Compatibility then follows:

Definition 2. A mechanism with *interim* allocation rule x and *interim* payment rule p is Bayesian Incentive-Compatible (BIC) if

$$v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z) \quad \forall i, v_i, z.$$

Using these, we can more easily prove the BIC/BNE versions of Myerson's Lemma and the Revelation Principle.

Maximizing Expected Revenue via Virtual Welfare

Recall that the revelation principle says that it's without loss to focus only on truthful mechanisms.

Payment is determined by the allocation:

$$p_i(b_i, \mathbf{b}_{-i}) = b_i \cdot x_i(b_i, \mathbf{b}_{-i}) - \int_0^{b_i} x_i(z, \mathbf{b}_{-i}) dz$$

We want to maximize $\mathbb{E}_{\mathbf{v}\sim\mathbf{F}}[\sum_{i} p_i(\mathbf{v})].$

We derive that $\mathbb{E}_{v_i \sim F_i}[p_i(v_i, \mathbf{v}_{-i})] = \mathbb{E}_{v_i \sim F_i}[\varphi_i(v_i)x_i(v_i, \mathbf{v}_{-i})]$ where

$$\varphi_i(v_i) = v_i - \frac{[1 - F_i(v_i)]}{f_i(v_i)}$$

is the Myersonian virtual value. Then

$$\text{Revenue} = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}}[\sum_{i} p_i(\mathbf{v})] = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}}[\sum_{i} \varphi_i(v_i) x_i(\mathbf{v})] = \text{Virtual Welfare}$$

by taking $\mathbb{E}_{\mathbf{v}_{-i}\sim\mathbf{F}_{-i}}$ of both sides of our previous equation.

Maximizing Utility via Virtual Welfare

To maximize UTILITY = $\mathbb{E}_{\mathbf{v}\sim \mathbf{F}}[\sum_{i} x_i(\mathbf{v})v_i - p_i(\mathbf{v})]$ we can then substitute in our above virtual welfare for the revenue term:

$$\begin{aligned} \text{UTILITY} &= \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} x_{i}(\mathbf{v}) v_{i} - p_{i}(\mathbf{v}) \right] \\ &= E_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} x_{i}(\mathbf{v}) v_{i} \right] - \text{REVENUE} \\ &= E_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} x_{i}(\mathbf{v}) v_{i} \right] - \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} \varphi_{i}(v_{i}) x_{i}(\mathbf{v}) \right] \\ &= \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} x_{i}(\mathbf{v}) \left(v_{i} - v_{i} + \frac{[1 - F_{i}(v_{i})]}{f_{i}(v_{i})} \right) \right] \\ &= \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i} x_{i}(\mathbf{v}) \theta_{i}(v_{i}) \right] \end{aligned}$$

where

$$\theta_i(v_i) = \frac{[1 - F_i(v_i)]}{f_i(v_i)}$$

Given this conclusion, how should we design our allocation rule x to maximize expected virtual welfare (expected revenue)? Give the item to the bidder with the highest *virtual* value θ !

When would this cause a problem with incentive-compatibility? When the corresponding x isn't monotone! When is this monotone? For *anti-MHR* distributions.

Ironing

- Convert virtual values to quantile space: $h(q) = \theta(q) := \theta(F^{-1}(q))$ the v corresponding to that q.
- Integrate to get the curve: $H(q) = \int_0^q h(r) dr$.
- Take the convex closure: define \overline{H} as the largest convex function bounded above by H for all $q \in [0, 1]$.
- Take the derivative: $\bar{h}(q)$ is the derivate of H(q) extended to all of [0, 1] by right-continuity.
- Convert back to value space: $\bar{\theta}(v) = \bar{h}(F(v))$.

$$\mathbb{E}_{\mathbf{v}}[\sum_{i} x_i(\mathbf{v})\theta_i(v_i)] \le \mathbb{E}_{\mathbf{v}}[\sum_{i} x_i(\mathbf{v})\bar{\theta}_i(v_i)]$$

with equality if and only if $x'_i(v) = 0$ whenever $\overline{H}(F(v)) < H(F(v))$

Claim 2. The mechanisms that maximize utility are precisely those that

(1) maximize virtual (θ) welfare for every input **v** and

(2) the allocation is non-increasing (its derivative is zero) for every bidder whenever the utility curve is ironed.

(In math: for all $i, x'_i(v) = 0$ whenever $\overline{H}(F(v)) < H(F(v))$.)

Optimal mechanisms:

- Anti-MHR: Vickrey.
- MHR: Lottery.
- In-between: For iid, Vickrey with tie-buckets.

Definition 3. A k-unit (p,q)-lottery denoted $Lot_{p,q}$ allocates as follows for p > q. Let the agents that bid over p be the "priority" agents.

- **a.** If there are at most k agents with bid over q (including the priority agents), allocate to them all at a price of q.
- **b.** If there are k or more priority agents, allocate to them at a price of p, running a lottery to determine who gets allocated.
- c. Otherwise, allocate to the priority agents with certainty at price $\frac{k-s+1}{t+s}q + \frac{s+t-k}{t+1}p$ and lottery the remaining s agents above q at a price of q.

References

 Jason D. Hartline and Tim Roughgarden. Optimal mechanism design and money burning. In STOC '08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages 75–84, New York, NY, USA, 2008. ACM.