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Single-Parameter Optimal Utility Maximization

The following is based on [1].

Bayesian Stages and Interim Rules

interim: Values v; have been drawn; ¢ only knows their own valuation, and thus the updated prior
F |o,.

Definition 1. We define the interim allocation and payment rules in expectation over the updated
Bayesian prior given ¢’s valuation:

x;(v;) = Prp[xi(v) =1 | v;] = Ep[z;(v) | vi] and pi(vi) = Ep[pi(v) | vy].
Our definition of Bayesian Incentive-Compatibility then follows:

Definition 2. A mechanism with interim allocation rule x and interim payment rule p is Bayesian
Incentive-Compatible (BIC) if

viwi(v;) — pi(vi) > vizi(2) — pi(z) Vi, v, 2.

Using these, we can more easily prove the BIC/BNE versions of Myerson’s Lemma and the Reve-
lation Principle.

Maximizing Expected Revenue via Virtual Welfare

Recall that the revelation principle says that it’s without loss to focus only on truthful mechanisms.

Payment is determined by the allocation:

b;
pi(bi,b_i) = b; - 2;(bi, b_y) — / zi(2,b_;)dz
0
We want to maximize Ey r[), pi(v)].
We derive that E,, r, [pi(vi, v_;)] = Ey,~F, [0i(vi)zi(vi, v_;)] where

[1 - Fi(vi)]

pilvi) = vi = fi(vi)

is the Myersonian virtual value. Then

REVENUE = E"NF[Z pi(v)] = EVNF[Z @i(vi)z;(v)] = VIRTUAL WELFARE

by taking Ey ,~r_, of both sides of our previous equation.



Maximizing Utility via Virtual Welfare

To maximize UTILITY = Eyop[Y_; zi(V)v; — pi(v)] we can then substitute in our above virtual
welfare for the revenue term:

UTILITY = EVNF[Z zi(V)v — pi(v)]
= BEyor[>_ 2i(v)vi] — REVENUE
= Eyp [Z 2;(V)vi] — Eyop [Z pi(vi)zi(Vv)]

= Buer(3i(9) (v~ Ep )

— EVNF[Z (V)03 (v;)]

where 1 F(o)]
bilvi) = fi(vi)

Given this conclusion, how should we design our allocation rule z to maximize expected virtual
welfare (expected revenue)? Give the item to the bidder with the highest virtual value !

When would this cause a problem with incentive-compatibility? When the corresponding z isn’t
monotone! When is this monotone? For anti-MHR distributions.

Ironing

e Convert virtual values to quantile space: h(q) = 0(q) := 0(F~!(g)) — the v corresponding to
that ¢.

e Integrate to get the curve: H(q) = [ h(r)dr.

e Take the convex closure: define H as the largest convex function bounded above by H for all
q €10,1].

e Take the derivative: h(q) is the derivate of H(q) extended to all of [0, 1] by right-continuity.

e Convert back to value space: 8(v) = h(F(v)).

Claim 1. B

By 2i(v)6i(v:)] < Ey[Y | xi(v)0i(vs)]
with equality if and only if z/(v) = 0 whenever H(F(v)) < H(F(v))
Claim 2. The mechanisms that maximize utility are precisely those that

(1) maximize virtual (¢) welfare for every input v and



(2) the allocation is non-increasing (its derivative is zero) for every bidder whenever the utility
curve is ironed.

(In math: for all 4, z/(v) = 0 whenever H(F(v)) < H(F(v)).)
Optimal mechanisms:
e Anti-MHR: Vickrey.
e MHR: Lottery.
e In-between: For iid, Vickrey with tie-buckets.

Definition 3. A k-unit (p, ¢)-lottery denoted Lot , allocates as follows for p > ¢. Let the agents
that bid over p be the “priority” agents.

a. If there are at most k agents with bid over ¢ (including the priority agents), allocate to them
all at a price of q.

b. If there are k or more priority agents, allocate to them at a price of p, running a lottery to
determine who gets allocated.

c. Otherwise, allocate to the priority agents with certainty at price k;jjl q+ sﬂr;k p and lottery
the remaining s agents above ¢ at a price of q.
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