
Mechanism Design for a Complex World:
Rethinking Standard Assumptions

Kira Goldner

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2019

Reading Committee:
Anna R. Karlin, Chair

Nikhil R. Devanur
Thomas Rothvoss

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science and Engineering



c© Copyright 2019
Kira Goldner



i

University of Washington

Abstract

Mechanism Design for a Complex World:
Rethinking Standard Assumptions

Kira Goldner

Chair of the Supervisory Committee:
Professor Anna R. Karlin

Computer Science and Engineering

The data used as input for many algorithms today comes from real human beings
who have a stake in the outcome. In order to design algorithms that are robust
to potential strategic manipulation, the field of algorithmic mechanism design
formally models the strategic interests of the individuals and engineers their actions
using game theory. The primary research directions in this area concern designing
mechanisms to maximize either revenue or social welfare when selling to agents of
various valuation types.

This thesis addresses barriers to progress in three fundamental directions in auc-
tion theory by rethinking standard models and assumptions and provides positive
results in all three cases. First, we design revenue-optimal mechanisms in “inter-
dimensional” settings—highly structured correlated settings that sit in between
the assumed dichotomy of single-dimensional and multi-dimensional settings. Sec-
ond, we propose a new model of proportional complementarities and construct
an intuitive, simple mechanism that guarantees near-optimal revenue. Third, we
study welfare maximization in the interdependent values setting without the single-
crossing condition, and guarantee strong approximations for the most general setting
of combinatorial auctions.
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1 Introduction
1.1 Designing Algorithms for Strategic Input

In the modern world, algorithms are increasingly used to make decisions that
have tangible impacts on peoples’ lives. Consider health insurance policies that
determine which workers can seek treatment at which hospitals, or online platforms
that determine which workers can apply for which jobs, or even a simple auction
that determines which ad slots are allocated to which advertisers. When algorithms
are designed under the assumption that their inputs will be accurate, but are instead
run on (potentially manipulated) data that is produced by strategic individuals who
have a stake in the outcome, the algorithm may perform poorly, and its guarantees
may no longer hold.

Take, for example, Uber’s algorithm for surge pricing. Their goal is to equalize
driver supply and rider demand in order to maximize the number of successful
driver-rider pairings. However, if drivers know that prices are likely to increase
in the near future, or if their assigned ride turns out to be particularly low-paying,
they may shut off their app in order to remain available for the higher-paying rides
[Kelly, 2018]. When drivers do this, it misrepresents the true supply of drivers, and
so the pricing and matching algorithms don’t work as expected.

What is needed is a theory that accounts for the fact that if strategic agents can
manipulate the input to the algorithm in order to improve their outcomes, then they
will do so—a theory that can provide guarantees even given this sort of strategic
input. This is where game theory comes in, providing tools to model and reason
about the utility of strategic agents for every possible action that they might take.

The field of algorithmic mechanism design combines ideas from both algorithm
design and game theory to produce mechanisms: algorithms that guarantee that,
even when the participants act in their own self-interest, the designer’s objective is
achieved. Game theory is the study of strategic behavior where actions and payoffs
are pre-defined; the challenge being to reason about which outcomes the strategic
players will select. In contrast, mechanism design is sometimes referred to as “reverse
game theory.” Given knowledge about players’ utility functions, the challenge is for
the designer to choose the rules of the “game” in order to incentivize the players to
behave in such a way that the designer’s objective is met.
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Algorithmic mechanism design merges ideas from computer science, such as
notions of tractability and approximation, with economic notions, such as incentives,
strategic behavior, and economic efficiency. Ideas at this intersection allow us to
develop a theory that more closely aligns with the scenarios that modern day
algorithms face when they interact with strategic users.

1.1.1 Overview of thesis

This thesis makes progress on three fundamental problems in auction theory by
rethinking standard models and assumptions.

Interdimensional mechanism design. The problem of designing revenue-maximizing
auctions, also known as optimal auctions, has been the subject of intense study for
decades. The problem is completely solved when the auctioneer has a single item to
sell [Myerson, 1981]; however, even in the case where a seller has only two items to
sell, we fail to fully understand optimal auctions. The optimal auction in this setting
can be incredibly complex—highly randomized and intractable to compute—and
thus characterizations remain elusive.

Our work introduces a new subclass of natural and ubiquitous multi-dimensional
settings that we call interdimensional settings. The complexity of maximizing revenue
in these settings lies strictly between the “easy” case of “single-parameter” settings
(where the buyer’s private information is characterized by a single number) and the
fully general “multi-dimensional” setting. For an example, consider the case where
a seller offers items that vary in levels of quality.

Our main result is a complete characterization of the optimal solution in the
interdimensional setting we call “The Fedex Problem.” This is one of the first
multi-dimensional settings where a closed-form solution is obtained without any
restriction on the form of the mechanism and without any assumption about the
prior distributions from which buyer values are drawn.

We then characterize the optimal mechanism for selling to a single-minded
buyer. While this is only a slight generalization of the FedEx setting, we find that
the menu complexity, or the number of distinct options offered to the buyer, jumps
from exponential in the FedEx setting (specifically, 2m−1 form services) to unbounded
but finite (even for m = 3 services) in the single-minded setting. This sharply
separates the single-minded setting from both the FedEx setting and the “multi-
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dimensional” two-item additive setting, which is known to have uncountably infinite
menu complexity [Daskalakis, Deckelbaum, and Tzamos, 2017].

Mechanism design with complements. Items have complements when a buyer
derives some additional value from receiving a set of items beyond just the sum of
his values for the individual items. A classic example concerns a left and right shoe:
obviously, a buyer derives significantly more value for a pair of shoes than the sum
of his value for a lone left shoe plus his value for a lone right shoe.

Positive results for maximizing revenue in settings with complements have been
few and far between, and either preclude decent approximation factors or rely on
the assumption of independence between valuations for every different bundles of
items (which clearly does not always make sense, e.g., consider the left shoe, the
right shoe, and the pair of shoes).

Our work revisits the question of how to model complementarities. We introduce
a new model that replaces the independence assumptions of previous models
with known proportionalities observed from data. Our model is motivated by
the Microsoft Pricing Engine, a product that was developed to take in a company’s
sales history dataset and output a suggestion for what prices to sell that company’s
products at, whether to sell them individually or bundle them together, and how to
capitalize on any complementarities that may exist among the items. For example,
if it is known that users derive some extra value from using Microsoft Word with
Excel, say, by creating charts in Excel and dragging them into Word, it may increase
the seller’s revenue to sell Word and Excel together as a bundle.

Our main result is a new, simple, and intuitive mechanism that capitalizes on
these proportionalities. As a result, we are able to give approximations to rev-
enue that are linear in the smaller of (1) the maximum-degree and (2) the largest-
hyperedge for a hypergraphic model of complementarities. This contrasts sharply
with prior work which gives an approximation that is linear in the maximum-degree
but exponential in the largest-hyperedge, and also requires a strong independence
assumption.

Mechanism design with interdependent valuations. In the standard model of
independent private values, a buyer’s value for an item is unaffected by other buyers’
values for the item. This is often unrealistic. For an item such as a house or a
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painting, the item’s resale value is directly relevant to the buyer’s willingness-to-pay,
and is well-approximated by the values of other buyers. Further, in many cases,
buyers do not actually know their values for an item, but rather, each have partial
information regarding the item. Combining the information of all buyers informs a
buyer of his value for the item. For example, if two firms are bidding for oil drilling
rights, and one firm learns the amount of oil available, that information directly
impacts the value that the other firm has for the drilling rights. The interdependent
values model [Milgrom and Weber, 1982] captures the idea that a buyer’s information
and value may impact the values of other buyers.

Unfortunately, for interdependent valuations, there are strong impossibility
results that preclude the existence of mechanisms for attaining optimal social welfare
beyond very restricted settings (such as single-item auctions when buyer valuations
satisfy the “single-crossing” condition).

Our work introduces a new assumption on interdependent valuations that we call
“submodularity over signals.” This assumption is natural and benign; in particular,
it is satisfied by the typical examples of interdependent valuations in the literature.
With this assumption in hand, we obtain the first constant-factor approximations to
social welfare for combinatorial auctions, the most general auction environment, in
the interdependent values model.

In the rest of this chapter, we present a brief overview of results in each of these
three directions, with formal definitions deferred to chapters 3-6.

1.2 Interdimensional Mechanism Design

In this section, we sketch the landscape of known revenue-optimal mechanisms,
highlighting the sharp contrast between single-dimensional and multi-dimensional
settings. We then overview our results for the FedEx setting and the single-minded
setting, and discuss the features of these interdimensional settings that provide
traction for a duality approach. Full details are provided in Chapters 3 and 4.
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1.2.1 Background: Optimal Revenue

One of the most fundamental problems in mechanism design concerns an auctioneer
who owns m items and wishes to design a revenue maximizing auction for selling
them. In the standard model for this setting, there are n potential buyers, and each
buyer i has a value for each item j. From the seller’s perspective, buyer i’s value
for item j is drawn from an independent prior distribution Fij , of which the seller
has full knowledge. What mechanism for selling the m items should the seller
implement in order to extract the most revenue possible (in expectation over the
prior distributions)?

As we will discuss in Chapter 2, by the revelation principle, it is without loss to
restrict our attention to truthful—or (Bayesian) incentive compatible—mechanisms.
That is, we can focus on mechanisms for which it is in the best interest of every
buyer to report his true valuations for each item to the mechanism.

If m = 1, then the seller only has a single item to sell, and this problem is
completely resolved with a beautiful closed-form theory [Myerson, 1981; Riley and
Zeckhauser, 1983; Bulow and Roberts, 1989]. Each buyer has a virtual value function
ϕi(·) mapping values to so-called ”virtual values”. Myerson shows that the expected
seller revenue is maximized by allocating to the buyer i with the highest virtual
value ϕi(vi), that is, maximizing expected virtual welfare. As this process only yields
a truthful mechanism for regular buyer distributions, Myerson defines an ironing
procedure to accommodate irregular distributions. We define all these concepts
formally in Section 2.3.

Myerson’s virtual value theory extends to all single-parameter environments. This
includes, for example, selling k identical items to buyers who wish to buy one
item. Extending Myerson’s theory or introducing an analogue for multi-dimensional
environments, where a buyer has more than a scalar for private information, has
been a long-standing open problem in mechanism design.

Unfortunately, optimal multi-dimensional mechanism design proves to be ex-
ceptionally challenging. For example, the optimal mechanism to sell two items
to a single additive bidder might offer uncountably infinite options to the buyer
[Daskalakis et al., 2017; Manelli and Vincent, 2006], while no mechanism that offers
only a bounded number of options can guarantee a finite approximation to the
optimal revenue [Briest, Chawla, Kleinberg, and Weinberg, 2015; Hart and Nisan,
2017]. As a result, most work aimed at this goal has instead either characterized
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the optimal mechanism for restricted settings or distributions [Laffont, Maskin, and
Rochet, 1987; McAfee and McMillan, 1988; Giannakopoulos and Koutsoupias, 2014,
2015], or has provided sufficient conditions under which a particular mechanism is
optimal [Haghpanah and Hartline, 2015; Daskalakis et al., 2017]. See Section 3.1.1
for an in-depth overview.

1.2.2 Our Contribution: Optimal Results in Interdimensional
Settings

As we have seen, there is quite a dichotomy painted between “single-dimensional”
settings (e.g. where all items are identical) and “multi-dimensional” settings (e.g.
where all items are heterogenous). Single-dimensional settings have optimal auc-
tions which are described by a beautiful closed-form theory, offer only one non-trivial
option, and are simple to compute. In contrast, multi-dimensional settings have
optimal auctions which may offer infinitely many options, can be intractable to
compute [Daskalakis, Deckelbaum, and Tzamos, 2013], and in addition to many
other undesirable properties, elude characterization thus far.

In Chapters 3 and 4, we study optimal auction design in a regime that is funda-
mentally in between. Specifically, we rethink the standard assumption that settings
with multiple items must either be identical or completely heterogenous with inde-
pendently drawn valuations. Instead, we introduce settings such as in the following
scenario, where varying qualities of service are offered and the customer’s value is
highly correlated across these services.

Scenario 1: The FedEx Problem. A customer has a package to ship and a deadline
that he needs the package received by. If he purchases a shipping option that will
deliver the package on or before his deadline, then the shipping service is worth
some value v to him, otherwise it is worth nothing. The (value, deadline) pairs are
drawn from an arbitrarily correlated joint distribution F . The seller, FedEx, sells a
variety of shipping options: 1-day, 2-day, and so on, up to m-day shipping. Given
the prior F , what mechanism maximizes FedEx’s expected revenue?

Observe that the buyers are unit-demand for one ofm different shipping options
with a specific correlated structure over their values for the options. In particular, if
a customer has a value v for receiving a package by deadline d, then he values 1-day,
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2-day, and up to d-day shipping at v each, and (d+ 1)-day through m-day shipping
at 0. This leads us to our first research question, which we address in Chapter 3.

Question 1. What is the revenue-optimal mechanism for selling to a single “FedEx”
buyer, whose prior distribution is known?

What is special about the FedEx setting is that if we consider only the customers
with a deadline i days from now, it’s as if we have a single-dimensional problem.
These single-dimensional problems, one for each potential deadline, are stitched
together by the inter-day incentive compatibility constraints, creating a very specific
type of multi-dimensional problem. As we will see, the incentive compatibility
constraints within each deadline, as well the constraint that each type prefers his
deadline to reporting one deadline earlier, are enough to ensure global incentive
compatibility (IC). This limited number of relevant constraints also means that we
can use Myerson’s payment identity. We depict these IC constraints in Figure 1.1.

1

2

3

4

1

2

3

4

1

2

3

4

deadline 𝑖
1 2 3

va
lu

e 
𝑣

1

2

3

4

1

2

3

4

1

2

3

4

deadline 𝑖
1 2 3

va
lu

e 
𝑣

Figure 1.1: A depiction of the incentive compatibility constraints in FedEx for a
discretization of the value space (for ease of visualization). An arrow from (v, i) to
(v′, i′) indicates that type (v, i) must prefer truthful reporting to misreporting type
(v′, i′). The left illustration contains the analogue of single-dimensional constraints
that we would hope for in the blue grid, as well as the red constraints that we expect
to have for all pairs of types. However, the structure of the FedEx setting enables a
large reduction in IC constraints, as depicted on the right. We only need that a type
prefer reporting their value over any other value for a fixed deadline (the vertical
blue constraints, replaced by the payment identity) and for a type to prefer reporting
their deadline over one deadline earlier (the asymmetric green constraints).

We attack the problem using a duality approach similar to that of Giannakopou-
los and Koutsoupias [2014]. We leverage these two features of the FedEx setting—the
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limited number of IC constraints, and the use of the payment identity to swap out
payment variables for constraints on allocation variables—to decrease the number
of variables and constraints in the primal and dual problems such that we are able
to come up with a solution. These optimal variables provide a characterization of
the optimal mechanism for any prior distribution over (value, deadline) pairs. This
is one of the first results of this form beyond single-parameter settings, and is in
contrast to the prior optimal revenue results in multi-dimensional settings, which
are either for restricted distributions or particular mechanisms.

The optimal mechanism takes the following form. Each shipping option will
have a price—possibly randomly drawn from a distribution of prices, of which
the buyer has full knowledge for each shipping option. The buyer will choose the
shipping option whose price, in expectation over the randomization, maximizes his
utility, and will commit to using this shipping option alone. Because the mechanism
is incentive compatible, if the buyer’s deadline is in d days, he will commit to d-day
shipping. Then, the price for d-day shipping, pd, will be drawn randomly from the
distribution. If the buyer’s value v < pd, then he will not buy shipping and will not
ship his package, but he cannot now purchase a different shipping option. If v ≥ pd,
then he will ship his package with d-day shipping. The prices are determined by
a combined-deadline revenue curve, which acts like a dynamic program for the
revenue for all later days. In fact, these combined revenue curves are precisely the
optimal dual variables.

Further, our characterization parallels Myerson’s single-item characterization
in some ways, with appropriate modifications to handle the more complex setting.
For example, we optimize these combined revenue curves, which require a form of
Myerson-like “ironing,” except in value-space instead of quantile-space1, in order
to ensure that the inter-day incentive-compatibility constraints align. By studying
this structured “interdimensional” realm, we are able to develop a closed-form solu-
tion, while side-stepping many of the negative results of “truly” multi-dimensional
settings, such as the infinite menu complexity result for correlated distributions
[Daskalakis et al., 2017].

Further, combining our approach with the Lagrangian approach of Cai, Devanur,
and Weinberg [2016], enables us to view our solution through the language of virtual

1Quantile space corresponds to value space using q = 1 − F (v) for any value v. Note that
q ∈ [0, 1].
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welfare maximization, and to describe precisely what the analogue of Myersonian
virtual values are in the FedEx setting.

Single-Minded Agents. The FedEx setting is not the only environment possessing
the features that give duality much more traction toward characterizing the optimal
mechanism. In fact, one way to view the “items” for sale (shipping options) in
the FedEx setting is as a totally-ordered set where i-day shipping is better than
(i + 1)-day shipping. A generalization of this setting is selling partially-ordered
items, or equivalently, selling bundles to single-minded bidders. For example, an
internet service provider might be selling internet, a bundle with internet/phone,
and a bundle with internet/cable. A customer may show up with an interest in any
of these three bundles. Clearly, internet/phone and internet/cable are both at least
as good as internet, however internet/phone and internet/cable are incomparable
to each other. That is, these bundles are partially-ordered where the relation is set
inclusion. This is depicted in Figure 1.2.

Figure 1.2: A depiction of the smallest example of a single-minded instance.

This introduces our second research question, which we address in Chapter 4.

Question 2. What is the revenue-optimal mechanism for selling to a single single-
minded (or “partially-ordered”) buyer, whose prior distribution is known? How
does the optimal mechanism vary in complexity from FedEx, single-dimensional,
and multi-dimensional settings?

Extending the approach for the FedEx setting to this problem and others, we pro-
vide a characterization of the optimal mechanism, giving lower and upper bounds
on the degree of randomization needed, and developing a deeper understanding of
the use of ironing. We combine the Lagrangian approach of [Cai et al., 2016] with



10

the duality framework of [Giannakopoulos and Koutsoupias, 2014] to come up with
a new duality approach for characterizing optimal mechanisms.

We show that these “interdimensional” settings fall on the spectrum between
single- and multi-dimensional by several metrics: (1) how precisely we can describe
the optimal mechanism, (2) the degree of randomization required, and (3) the
conditions that imply that the optimal mechanism is deterministic.

The Class of Interdimensional Settings. Many natural settings, such as the FedEx
setting or the Single-Minded setting, turn out to be interdimensional. They fill in
the spectrum that was previously assumed to be a dichotomy between single- and
multi-dimensional settings, and give some of the first unrestricted progress on char-
acterizing optimal mechanisms in (limited) multi-dimensional settings. Since our
work in the FedEx setting, numerous follow-up works have studied interdimensional
settings, characterizing the revenue-optimal mechanisms or analyzing their menu
complexity. Saxena, Schvartzman, and Weinberg [2018] study the menu complexity
of (1− ε)-approximations to revenue in the FedEx setting. Devanur and Weinberg
[2017] study the Budgets setting, where a buyer has a value for an item and a private
budget bwhich is the most that he can pay. Devanur, Haghpanah, and Psomas [2017]
study the Multi-Unit Pricing setting, where a buyer has a value for a unit of an item,
and a private demand capacity d, and he is additive for each unit he receives up to
his demand capacity. That is, his value for k units is min{k, d} · v. In each of these
settings, the incentive compatibility constraints between types are more limited than
“fully multi-dimensional” settings, but the seller still must carefully reason about
them to design the optimal mechanism. See Section 3.7 for more details about this
class of problems.

1.3 Simple and Approximately Optimal Pricings with
Complements

In this section, we describe the limitations of prior work on settings with comple-
ments and our approach to circumventing these limitations. We begin with an
overview of a common workaround to the complexity of optimal mechanism design:
the use of mechanisms that are both simple and approximately optimal. We then
describe a new model of proportional complementarities and the simple and ap-
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proximately optimal pricing that we construct for this model. Details are provided
in Chapter 5.

1.3.1 Background: Simple and Approximately Optimal Pricings

As we have discussed, in multi-dimensional settings, the precise optimal mechanism
tends to be complex and elusive in many ways. This has motivated research on
the design of mechanisms that are simple, but still provide near-optimal expected
revenue guarantees.

One of the first such results was by Chawla, Hartline, Malec, and Sivan [2010],
who consider the setting of n unit-demand buyers, who each want at most one of m
possible items, and have values that are drawn from independent priors. They prove
that selling the items separately gives a 30-approximation to the optimal revenue.
Another result of this type is for a single additive buyer with values drawn inde-
pendently across m items. Babaioff, Immorlica, Lucier, and Weinberg [2014] show
that the better of (1) selling separately (by posting the reserve price on each item)
and (2) selling the grand bundle (by posting the reserve price for the distribution
of the sum of all item values) gives a 6-approximation to the optimal revenue in
expectation. This is surprising, since neither selling separately nor grand bundling
on their own can guarantee a constant-factor approximation [Hart and Nisan, 2017].
This result was extended, with modifications in the mechanism, for a single subad-
ditive buyer [Rubinstein and Weinberg, 2015], multiple additive buyers [Yao, 2015],
multiple constrained-additive buyers [Chawla and Miller, 2016], and multiple XOS
and subadditive buyers [Cai and Zhao, 2017]. These results were also unified in a
framework by Cai et al. [2016]. For more details, see Section 5.1.1.

All of the above simple-and-approximately-optimal results apply only in settings
where, (1) there is independence between items and (2) at minimum, subadditivity
holds. This assumes that a buyer’s valuations are complement-free. However,
there are many settings where a buyer derives some extra value from owning a
combination of items that is not present from owning any item individually; that is,
the items have complementarities.

The first work focusing on revenue maximization for complements is that of
Eden, Feldman, Friedler, Talgam-Cohen, and Weinberg [2017b], who aim to find
a simple and approximately-optimal mechanism for a single buyer with comple-
mentarities given by the mph-k model, introduced as the ph-k model by Abraham,
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Babaioff, Dughmi, and Roughgarden [2012] and extended to the mph-k model by
Feige, Feldman, Immorlica, Izsak, Lucier, and Syrgkanis [2015]. In this model, a
buyer’s valuation is given by (the maximum over) a weighted hypergraph, and
a buyer’s valuation for any set of items S is then the sum over his value for the
activities associated with all subsets of items T ⊆ S (the weighted edges wT ), that is,

v(S) = max
`
v`(S) where v`(S) =

∑
i∈S

wi +
∑
T⊆S

wT .

To utilize the framework of previous results, the authors assume that the buyer’s
hyperedge types are drawn independently from known distributions. Their result is
that the better of selling separately and the grand bundle in the mph-k model gives
an O(d)-approximation, where d is the largest degree of any vertex, or the largest
number of edges that any one item appears in. Further, they prove that this factor d
is necessary. In addition, they show that the approximation is exponential in the
positive rank k, the size of the largest hyperedge, despite the fact that the welfare
approximations from Abraham et al. and Feige et al. are linear in k.

1.3.2 Our Contribution: Proportional Complements

We begin with a motivating example for our new model:

Scenario 2: Selling Microsoft Office. Microsoft is selling Office products, includ-
ing Word and Excel, and these items have complementarities among them. A buyer
has some value for owning Word and some value for owning Excel. However, if
he owns Word and Excel together, he derives some extra value from the pair that
was not present from owning either product individually; this corresponds to the
benefit of owning the two products together, such as creating a chart in Excel and
dragging it into a Word document. The amount that this benefit increases the
buyer’s willingness-to-pay for the pair of both Word and Excel is proportional to
the buyer’s values for Word and Excel individually. Given the market parameters
that determine these proportionalities, how should Microsoft sell Office products in
order to (approximately) maximize revenue?

In the model of Eden et al., the buyer’s value for {Word, Excel} would consist of
his values for activities of Word, Excel, and Word + Excel, and his draws for these
three values would be independent. Should he have higher values for Word and
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Excel individually, this would have no bearing on his value for the activities he
can do with Word + Excel together. This seems very unrealistic. However, without
the independence assumption from Eden et al. [2017b], strong negative results for
correlated distributions hold [Briest et al., 2015; Hart and Nisan, 2017], and no finite
approximation to revenue is possible.

In Chapter 5, we propose a new model where a buyer has base valuations for each
item, and the buyer’s value for a set of item’s are proportional to his base valuations
for the individual items. In this model, the complementarities among items are
parameters of the market. This is particularly relevant in a case such as selling
Microsoft Office products, where the items are used together in an approximately
fixed way, and the seller is able to collect data on how they are used and estimate,
e.g. via cross-price elasticities, these market parameters.

In our model, for each item i, the buyer has a base valuation ti, and these base
valuations are drawn from independent distributions. Then, for an item i and a
disjoint set of items T , a market parameter ηiT describes the boost from receiving
the bundle that includes all the items in set T in addition to item i: the buyer derives
an additional value of ηiT ti from item i. Thus, if a buyer receives a set S, his value
for item i is

ηi(S)ti :=

1 +
∑

T⊆S\{i}

ηiT

 ti

where the 1 represents his value for item i itself, and his value for the set of items S
is

vi(S) :=
∑
i∈S

ηi(S)ti.

Notice that the boosts that the buyer receives from owning additional items are
described asymmetrically here, which is only more general. It is easy to instantiate
symmetric boosts.

Example 1. Suppose that the three items are Powerpoint, Excel, and Word. The
market parameters η that determine a buyer’s boosts are given in the form of a
hypergraph, as depicted in Figure 1.3. If the buyer were to receive Powerpoint and
Excel, then his valuation for this bundle would be: his base valuation for Powerpoint
(tppt) plus the boost onto Powerpoint he gets from also owning Excel ηexcel→ppt · tppt,
plus his base valuation for Excel (texcel) plus the boost onto Excel he gets from also
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𝜂ppt→excel

𝜂excel→ppt 𝑡excel𝑡ppt

𝜂word→ppt

𝜂ppt→word 𝜂excel→word

𝜂word→excel

𝑡word

𝜂(ppt+excel)→word

Figure 1.3: A depiction of the proportion complements model instantiated for three
Microsoft Office products.

owning Powerpoint ηppt→excel · texcel. Note that we describe this second quantity as
ηexcel({excel + ppt}) · texcel. Should the buyer receive all three items, then he will also
get a boost from owning both Powerpoint and Excel onto Word, η(ppt+excel)→word.

Our primary question is as follows.

Question 3. Can a simple mechanism guarantee a constant-factor approximation to
the optimal revenue? Or, at the very least, an approximation linear in the parameters
d or k of the hypergraph? How can we use the specific knowledge of the market
parameters η in the mechanism?

Unsurprisingly, we find that selling items separately at their individual reserve
prices is not a good choice in this setting because of the complementarities between
the items. Instead, we find that the better of two mechanisms, selling the grand
bundle and running a new mechanism we call separate/free, gives a O(min{d, k})-
approximation to revenue. Contrast this with Eden et al. [2017b], whose approxima-
tion is linear in d but exponential in k2.

2In the complete hypergraph with hyperedges of size k = log n (and the maximum degree d =(
n

logn

)
), our mechanism guarantees an O(log n)-approximation, while Eden et al. [2017b] guarantees

at best an O(n)-approximation. Of course, the models are quite different.
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The mechanism separate/free first gives a number of items away for free, which
the buyer will, of course, happily take. Then, capitalizing on the fact that there
are complementarities among these free items and the items remaining for sale,
the latter (which are now more valuable to the buyer) can be sold separately at
inflated prices. We see this mechanism often in practice, such as Android giving
the operating system away for free to sell ads across it, or Microsoft giving OneNote
away for free with compatibility to Office.

We also use the [CDW ’16] Lagrangian Duality framework in a new way. The
standard approach would derive an upper bound via duality in the complements
setting and cover it directly with mechanisms. Instead, we upper bound the revenue
in the complements setting by the revenue in an inflated setting, and our proof is
via the optimal dual variables, covering the variables in the complements setting
with those from the inflated setting. Then, we use the standard approach on the
inflated setting, and bound this revenue with mechanisms from the complements
setting.

1.4 Welfare Maximization for Interdependent
Valuations

In this section, we highlight the difficulty of maximizing social welfare in the inter-
dependent value setting. We overview our mechanism design goals, introduce the
natural submodular over signals assumption, and summarize our results. Full details
appear in Chapter 6.

1.4.1 Background: Limited Results for Restricted Interdependent
Valuations

A common goal in mechanism design is to maximize social welfare (or economic
efficiency)—that is, to allocate the goods to the bidders who value them the most.
In the typical mechanism design model, each buyer has a private value for each item
being sold, and the fact that buyer 1 values a coffee at $3 has no impact on buyer
2’s value for the same coffee. For private values, no matter what type of valuations
buyers have for the goods (e.g. complements or substitutes), the Vickrey-Clarke-
Groves (VCG) mechanism truthfully maximizes welfare [Vickrey, 1961; Clarke, 1971;



16

Groves, 1973]. The VCG mechanism finds the allocation of items to buyers that
maximizes welfare and computes appropriate payments to make this allocation
truthful.

In contrast to private values, we study the interdependent values model, depicted
in the following scenario.

Scenario 3: Buying a House. A number of customers are interested in purchasing
a house. Each potential buyer has an inspection performed on the house which
returns some piece of private information: perhaps agent 1 learns about the quality
of the foundation, while agent 2 learns about the quality of the plumbing, agent 3 the
electrical, agent 4 the windows, and so on. Any agent’s value for the house depends
on all of these pieces of private information, even though they are unknown to the
agents. Thus, agents do not know their own value for the house; rather they know
their valuation as a function of the unknown private information, in this case, the
quality of the plumbing and of the electrical. How can the seller solicit the private
information in order to compute these valuation functions and determine how to
allocate the house to (approximately) maximize social welfare, e.g. giving the house
to the buyer who (approximately) values it most?

Formally, each buyer i has some private information si, which we call his signal,
and a valuation function vi(s1, s2, . . . , sn) which depends not only on his own private
information, but on the private information of possibly all n buyers. In this event, a
buyer may not even know his own value, only that it increases at a certain rate with
the private information of another buyer, whose private information he does not
know. This complicates incentives a good deal. Notice that in the interdependent
values model that we use, initiated by Milgrom and Weber [1982], the form of each
buyer’s valuation function is assumed to be public, although the inputs to this
function are private, and distributed across the buyers. Take the following scenario
from Dasgupta and Maskin [2000].

Example 2 ([Dasgupta and Maskin, 2000]). Consider two wildcatters who are com-
peting for the right to drill for oil on a given tract of land. The wildcatters’ costs of
drilling differ. Wildcatter 1 has a fixed cost of 1 and a marginal cost of 2 (per unit of
oil extracted). Wildcatter 2’s fixed cost is 2 and marginal cost is 1. Oil can be sold at
a price of 4. Wildcatter 1 performs a (private) test and discovers that the expected
size of the oil reserve is s1 units. Wildcatter 2’s private information s2 does not affect
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either driller’s payoff. We have

v1(s1, s2) = (4− 2)s1 − 1 = 2s1 − 1

and
v2(s1, s2) = (4− 1)s1 − 2 = 3s1 − 2.

Now, even though the buyers do not necessarily know their valuations, we could
try to use the Generalized VCG (G-VCG) mechanism, proposed in Dasgupta and
Maskin [2000]. In this generalization of VCG, the bidders are first asked to report
their signals (rather than values) to the auctioneer. Since the valuation functions
are publicly known, the auctioneer can then compute all of the buyers’ valuation
functions on the reported signals. If the reported signals are truthful, then the
auctioneer outputs the welfare-maximizing allocation, and tries to reverse-engineer
payments that will incentivize truthfulness (modified for signal space instead of
value space).

However, there is a problem with this proposal in Example 2. Suppose we use
the G-VCG auction and just give the drilling rights to the firm with the higher value.
If the first firm discovers that the reserve size is large, then the second firm will have
a much larger value, and thus will win the drilling rights. Hence, the first firm has
the incentive to misreport his signal and claim that the oil reserve is smaller than
it actually is. This will mislead the auctioneer into believing that firm 1’s value is
larger than firm 2’s. In this way, the interdependent value setting allows a buyer not
only to misreport his own private information, but to corrupt beliefs about other
buyers’ valuations as well.

The above G-VCG mechanism is sometimes truthful—when the valuations satisfy
what is called the single-crossing condition. This condition states, in essence, that a
buyer is more sensitive to his own signal than any other buyer, and rules out precisely
the type of scenario we see in Example 2. Under the single-crossing condition, the
G-VCG mechanism attains optimal social welfare for some single-parameter settings
under matroid feasibility constraints, and thus welfare maximization under single-
crossing for many important single-parameter settings is solved. On the other hand,
without single-crossing, there exists valuations such that the allocation that achieves
optimal social welfare cannot be implemented with a truthful mechanism. For
this reason, almost all prior work in interdependent value settings assumes the
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single-crossing assumption.
In addition, almost all work in the interdependent setting supposes that each

bidder i has a single signal, or piece of private information, si. We refer to this as the
case where signals are “single-dimensional.”

The two most relevant works that consider interdependent settings where bidders
instead have multiple or “multi-dimensional” signals are Dasgupta and Maskin
[2000] and Jehiel and Moldovanu [2001]. These works largely consist of impossibility
results, proving that when a bidder has multiple signals per outcome or one signal
for each of multiple possible outcomes, unless the valuations are degenerate, the
allocation that maximizes social welfare does not satisfy even Bayesian incentive
compatibility. These works also contain limited positive results, but contain very
strong assumptions, such as: a separability condition which essentially compresses
the signals to a single-dimensional statistic or valuation functions that are linear
functions of the signals.These two papers also focus on Bayesian incentive compatibility,
which requires that buyers’ signals are drawn from prior distributions that are
known to both the auctioneer and other buyers. See Section 6.1.4 for further details.

1.4.2 Our Contribution: Beyond Single-Crossing

Our goal in Chapter 6 of this thesis is to maximize welfare without the single-crossing
assumption. We know that attaining the optimal welfare without single-crossing
is impossible; instead, we aim to approximate the optimal welfare. The first attempt
at approximation without single-crossing was made in Eden, Feldman, Fiat, and
Goldner [2018], where strong lower bounds for approximation are shown when
the valuations do not satisfy single-crossing and are otherwise unrestricted. These
lower bounds imply that to guarantee good approximations, we must restrict the
valuation class in some way. Eden et al. [2018] investigate a parameterized form of
single-crossing, c-single-crossing, and obtain a deterministic O(nc)-approximation
and randomized O(

√
nc3/2)-approximation.

Another objective of our work is to eliminate the dependence of the results on
priors. Thus, we ask that our equilibrium notion be stronger than Bayesian incentive
compatibility.3 Specifically, we seek ex-post incentive compatible mechanisms that

3The strongest notion we might try to achieve, dominant-strategy incentive compatibility, is not
possible to enforce in interdependent settings due to the fact that buyers have the potential to corrupt
other buyers’ valuations by misreporting their signals
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obtain strong prior-free welfare guarantees. Ex-post incentive compatibility requires
that reporting truthfully be a best response to all other agents reporting their true
signals, and prior-free guarantees require that the approximation holds for every
realization of signals.

Our third goal is to extend beyond the realm of single-dimensional signals and
single-item (or single-parameter) settings. Ideally, we would like our mechanisms
to work well in settings as broad as combinatorial auctions, where a buyer may have
a value for every possible bundle of items, and might also have a signal for every
bundle.

All together, these goals culminate in the following research question.

Question 4. What truthful, prior-free approximation to welfare can we guarantee
without single-crossing? For single-dimensional or multi-dimensional signals? For
single-parameter settings? Beyond single-parameter settings? For combinatorial
auctions?

And, since we must restrict the valuation class to avoid the lower bound, we
naturally must ask:

Question 5. What natural, not-too-restrictive condition on the valuation class allows
strong approximation guarantees?

In Chapter 6, we show that if the valuation functions are submodular over signals,
then we can guarantee very strong approximations. We can interpret this condition
as meaning that when less information is available, e.g., when some signals are fixed
at lower values, buyers are more sensitive to a change in some other signal. This
condition arises naturally in many examples from the literature.

Submodularity allows us to use a simple random-sampling idea in our mecha-
nisms to help unentangle some of the incentive problems. We split the buyers into
two sets at random, A and B. B contains our “potential winners,” and we do not
use the signals in B to determine the allocations to other potential winners; we only
use the signals of non-winners from A. That is, we construct “proxy valuations”: for
i ∈ B, we consider i’s valuation computed given the reported signals in A, i’s own
signal, and none of the other signals inB. For i ∈ A, i’s proxy valuation is 0. We then
select the allocation that maximizes welfare with respect to the proxy valuations.
The key observation is that submodularity ensures that our proxy valuations are
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close enough in expectation to the true values such that they can be used as a good
approximation for welfare maximization.

This technique, combined with a new way to set payments, allows us to move
beyond the realm of single-parameter settings, and to obtain strong approximately-
optimal welfare guarantees in more general interdependent settings such as unit-
demand settings and combinatorial auctions. These are the first positive results in
these environments for interdependent values, in part because single-crossing or
generalizations thereof does not suffice in these environments for the maximum
welfare allocation to be attainable by a truthful mechanism.

In addition to submodularity and the random-sampling mechanism expanding
the terrain of positive results all the way to combinatorial auctions, our guarantees
also improve the best known approximation without single-crossing fromO(

√
nc3/2)

under c-single-crossing to 4 under submodularity, suggesting that submodularity
may be the correct condition for approximation.
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2 Preliminaries
In these preliminaries, we will define mechanism design concepts with respect to
typical assumptions, and in the proceeding chapters, we will modify the definitions
as needed as we move beyond various assumptions.

Section 2.1 defines the basics of a mechanism design setting. Section 2.2 dis-
cusses constraints pertaining to incentives and when and how to implement them.
Section 2.3 overviews revenue maximization preliminaries. Section 2.4 provides an
introduction to Lagrangian duality. The experienced reader may wish to skip this
chapter or simply refer to it as an appendix.

2.1 Mechanism Design Basics

For the purpose of this thesis, an auction contains n buyers or bidders, with bidder
i ∈ {1, . . . , n}. An auctioneer sells m items, denoted j ∈ {1, . . . ,m}. Any player that
is strategic is referred to as an agent, hence buyers are also agents.

Types. A buyer has a type v that is his private information. What this type repre-
sents precisely varies depending on the setting at hand.

In a single-item setting, there is an item for sale, and v is a scalar that represents
the buyer’s value, his maximum willingness-to-pay for the item, or how much the
item is worth to him. If he pays v − 3 dollars to receive the item, it is as if he has
gained three dollars.

In many settings with m items, v is a vector in Rm, where vj represents the
buyer’s value for item j. In more complex settings, v(·) might be a function of any
set of items.

When there are multiple buyers, we denote agent i’s type as vi, the vector of all
agents’ types as v, and the vector of all types aside from agent i as v−i. In general,
−i is used to denote all agents other than i.

(Direct) Mechanisms. For all settings in this thesis, the seller designs the mecha-
nism. The mechanism consists of two rules: the allocation rule x and the payment
rule p. In a direct mechanism, each buyer reports a bid bi of his type. If his bid
is truthful, then bi = vi. The allocation and payments are then computed on the
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reported bids of all buyers, b. In mechanisms that are not direct, the buyers may
take other actions and the allocation rules and payments may be computed based
on these actions. However, we study direct mechanisms in this thesis.

Allocations. The allocation rule x is a function of the bids of alln buyers; xij(b1, . . . , bn)

will denote the probability that item j is allocated to buyer i under bids (b1, . . . , bn).
If xij(b1, . . . , bn) = 1, then buyer i receives item j. If xij(b1, . . . , bn) = 0, then buyers
i does not receive item j. If xij(b1, . . . , bn) = α ∈ (0, 1), then the mechanism flips a
coin and with probability α, item j is allocated to buyer i.

Payments. The payment rule is also a function of the bids of all n buyers. If
pi(b1, . . . , bn) = 10, then the mechanism charges buyer i $10. We use the standard
assumption of no-positive-transfers, that is, it is always the case that pi(·) ≥ 0, for
all i.

Utility. We assume that buyers have quasi-linear utility and are risk-neutral. Thus,
if a buyer i has value vi for an item that he receives with probability x and for which
he is charged payment p (up front, independent of whether or not he successfully
receives the item), then his utility is xv − p. His allocated value is the probability that
he receives the item times his value for the time. Quasi-linear indicates that his utility
is his allocated value minus his payment. Risk-neutral indicates that the contribution
to his utility for getting an item with probability x is equal to x times his value, xv.

Consider a single-item setting with a buyer who has value vi. If the buyer reports
bi and the other buyers report b−i, then we denote buyer i’s utility as

ui(bi,b−i | vi) := xi(bi,b−i)vi − pi(bi,b−i).

If buyer i reports truthfully, we shorthand this as

ui(vi,b−i) := ui(vi,b−i | vi).

Environments. An auction environment describes the number of items for sale,
the constraints on which buyers can be served simultaneously, and the sort of
preferences that the buyers have. For each environment, we assume there are n
buyers and m items.
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In a single-item environment, the auctioneer sells m = 1 item. Each buyer’s type
vi is a scalar describing his value for that item.

In a single-parameter environment, the auctioneer sells many items. However,
each buyer’s type vi is still a scalar. Examples include:

• k-unit auctions, where each buyer has a value vi and wants one item, but the
seller has k identical items for sale.

• additive-up-to-k buyers, where m identical items are for sale, and each buyer
has a a value of vi for each item allocated to him up to k items, at which he
gets no additional value.

• where m identical items are for sale and each buyer has a value vi and wants
one item, but there are feasibility constraints on which buyers the seller can
simultaneously serve.

• where there arem distinct items, but there is a global belief about their ranking
and quality, such as in position auctions, where if the buyer gets the jth slot,
his value is βjvi, where βj is common and known to everyone.

A single-dimensional environment is one where the buyer’s type is a scalar, such
as single-item and single-parameter. A multi-dimensional is one where the buyer’s
type has multiple parameters. Typically, in a multi-dimensional environment, the
buyer’s type consists of at least m parameters, such as unit-demand and additive,
which are defined below.

In a unit-demand environment, the auctioneer sells m items. Each buyer’s type
is an m-vector vi ∈ Rm where vij represents buyer i’s value for item j. However,
each buyer wants at most one item. That is, buyer i’s value for receiving set S is
maxj∈S vij .

In an additive environment, the auctioneer sells m items. Each buyer’s type is
an m-vector vi ∈ Rm where vij represents buyer i’s value for item j. Each buyer is
additive over the items: for any set of items he receives, his value is the sum of the
items contained in the set. That is, buyer i’s value for receiving set S is

∑
j∈S vij .

Priors. In some scenarios, we assume that a buyer’s type v is drawn from a prior
distribution. We use F to denote the cumulative distribution function, and f to
denote its density function. We also write v ∼ F to denote that v is drawn from
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the distribution (with CDF) F . When there are multiple buyers and multiple items,
we use F to denote the joint distribution of all buyer types, and Fij to denote the
marginal distribution for buyer i’s value for item j.

The Bayesian Setting. We say that we are in the Bayesian setting if the prior distri-
bution of all buyers’ values F is known to the auctioneer and all of the buyers.

Objectives. The mechanism designer aims to maximize some objective. The most
common objectives are social welfare, also referred to as just “welfare” and also as
“efficiency,” and revenue.

Social welfare is thought of us “aggregate happiness,” and is equal to aggregate
buyer allocated value. Equivalently, it is the sum of all agents’ utility, where the
auctioneer herself counts as agent, and her utility is the revenue that she earns.
Formally, for a mechanism defined by (x, p) and for reported bids b,

Welfare :=
n∑
i=1

xi(b) · vi

where · represents a dot product in the event that we are in an environment such as
unit-demand or additive.

On the other hand, revenue is simply the sum of the buyers’ payments, and this
is thought of as “the seller’s happiness.” Since we cannot maximize each realization
of payments, we instead maximize expected revenue over the prior distributions of
the buyers. For truthfully reported values,

Revenue := Ev∼F

[
n∑
i=1

pi(v)

]
.

2.2 Incentives

In order to properly reason about agent’s incentives and the guarantees that we get
despite strategic behavior, we must define the following concepts.

Direct Revelation. The event where agents truthfully report their types to the
mechanism.
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Dominant Strategy Incentive Compatibility. A mechanism is dominant-strategic
incentive compatible (DSIC) if, for every agent i, for any realization of agent i’s type vi,
for any report of other agents’ types b−i, buyer i maximizes his utility by reporting
his true type vi. That is,

ui(vi, b−i|vi) ≥ ui(bi, b−i|vi) ∀i, vi, bi, b−i.

Ex-Post Incentive Compatibility. A mechanism is ex-post incentive compatible (EPIC)
if, for every agent i, for any realization of agent types v, and given that all other
agents report their true values, buyer i maximizes his utility by reporting his true
type vi. That is, if v−i are the true types of other agents,

ui(vi,v−i|vi) ≥ ui(bi,v−i|vi) ∀i, vi, bi,v−i.

Bayesian Incentive Compatibility. A mechanism is Bayesian incentive compatible
(BIC) if, for every agent i, for any realization of agent i’s type vi, in expectation
over the realization of the other agents’ types v−i and assuming that they report
truthfully, buyer i maximizes his utility by reporting his true type vi. That is, if v−i
are the true types of other agents, distributed according to CDF F−i, then

Ev−i∼F−i
[ui(vi,v−i|vi)] ≥ Ev−i∼F−i

[ui(bi,v−i|vi)] ∀i, vi, bi.

Remark 1. Observe that BIC implies EPIC which implies DSIC. Hence DSIC is the strongest
form if IC, and BIC is the weakest, of these three forms.

Individual Rationality. A mechanism is ex-post individually rational (IR) if, for
every agent i, for any realization of agent types v, every agent receives non-negative
utility from participating in the mechanism after the allocation has been determined.
That is, if Xi(vi,v−i) is the realization of the (potentially randomized) allocation to
buyer i and we overload notation and let vi(Xi(vi,v−i)) represent his valuation in
any setting here, then

vi(Xi(vi,v−i))− pi(vi,v−i) ≥ 0

A mechanism is interim individually rational if, for every agent i, for any realization
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of agent i’s type vi, every agent receives non-negative utility from participating in
the mechanism in expectation over the realizations of the other agents’ types and the
randomness of the mechanism. That is,

Ev−i∼F−i
[ui(vi,v−i)] ≥ 0.

The VCG Mechanism. The Nobel-prize-winning VCG mechanism [Vickrey, 1961;
Clarke, 1971; Groves, 1973] attains optimal social welfare and is DSIC. For any
environment, let x(v) denote the optimal allocation given n bidders with bids v and
let W ∗(v) denote the social welfare of this allocation. Let xi(v) denote the set of
items T ∗i that are allocated to buyer i in the optimal allocation x(v). Let wi,T ∗i denote
the welfare that i contributes to W ∗ by receiving T ∗i . Then buyer i’s payment is

pi(v) = W ∗(v−i)−
[
W ∗(v)− wi,T ∗i

]
.

Observe that by definition of welfare, wi,T ∗i is buyer i’s allocated value under the
optimal allocation, and thus his utility is ui(v) = wi,T ∗i − pi(v) = W ∗(v)−W ∗(v−i).
Since buyer i has no influence overW ∗(v−i) and the mechanism designer’s goal is to
maximize W ∗(v), then buyer i’s incentives are aligned with the mechanism design,
and his utility is best maximized by reporting his true value.

Revelation Principle. The revelation principle [Myerson, 1981] states that truth-
fulness essentially comes for free: if there is an optimal mechanism M (for whatever
objective) that is not IC, then we design a new mechanismM ′ that is IC and achieves
the same objective. The revelation principle depends on the definition of truthful-
ness. We sketch the idea for our above definitions of truthfulness, recalling what
each definition means.

• DSIC: Truth-telling is a dominant strategy.

• EPIC: Truth-telling forms a Nash equilibrium.

• BIC: Truth-telling forms a Bayesian Nash equilibrium.

Suppose that each buyer i is incentivized to apply some strategy si(·) to his type
(because it is his dominant or equilibrium strategy). That is, he reports si(vi) to the
mechanism M . Then we can design a new mechanism M ′ that solicits bids from
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each buyer, and when receiving bid bi from buyer i, applies si(·). Then buyer i is
incentived to report vi (as a dominant or equilibrium strategy), and M ′ achieves the
same objective. See Figure 2.1.

Figure 2.1: Depiction of the revelation principle.

Monotonicity and Payment Identity. In the single-parameter environment, My-
erson [1981] proves that DSIC is equivalent to the allocation rule x satisfying mono-
tonicity in each agent’s bid and the payment identity. Monotonicity in the allocation
rule is when the probability that the item is allocated to buyer i increases as buyer
i’s bid bi increases: xi(bi,b−i) ≥ xi(b

′
i,b−i) when bi > b′i. The payment identity is as

follows:
pi(bi,b−i) := bi · xi(bi,b−i)−

∫ bi

0

xi(z,b−i)dz.

In the following derivation, we omit the argument of the other bids b−i in
the allocation and payment function, as they remain fixed throughout the entire
argument.

From DSIC, we have that

vxi(v)−pi(v) ≥ vxi(v−ε)−pi(v−ε) and (v−ε)xi(v−ε)−pi(v−ε) ≥ (v−ε)xi(v)−pi(v)
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then

v [xi(v)− xi(v − ε)] ≥ pi(v)− pi(v − ε) ≥ (v − ε) [xi(v)− xi(v − ε)]

and by taking limε→0, we get that

vx′i(v) = p′i(v)

where the ′ denotes the derivative with respect to v. Integration then gives that

pi(v) =

∫ v

0

p′i(z)dz =

∫ v

0

zx′i(z)dz = vxi(v)−
∫ v

0

xi(z)dz

where the last equality follows from integration by parts.

Utility is Area Under the Allocation. Given the payment identity, in the single-
parameter setting, then in a DSIC mechanism, agent i’s utility is

ui(vi,v−i) = vi · xi(v)− pi(v) =

∫ v

0

xi(z,v−i)dz.

That is, holding the values of other agents v−i fixed, the utility of agent i for having
type vi is the area under the allocation curve x up until vi.

Taxation Principle. The taxation principle states that any direct revelation mecha-
nism is equivalent to offering a menu of lotteries. A lottery consists of a price and a
probability of allocation for every item. In essence, every report to the mechanism
corresponds to some menu option. The buyer could purchase any menu option, but
since truth-telling maximizes his utility, then he prefers to purchase menu option
that corresponds to reporting his true type. Thus, any mechanism is equivalent to
offering a menu of (price, allocation) pairs.

Menu Complexity. For a single buyer, one metric of complexity of a mechanism
is the number of menu options that are offered in the menu form of the mechanism,
excluding the option (0, 0) (which must be included in all menus in order to be
individually rational).
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2.3 Revenue Maximization.

The following concepts are defined according to Myerson’s single-parameter revenue-
optimal theory. All of the concepts will be defined in terms of n identical buyers
and 1 item, but can be generalized to n non-identical buyers.

Revenue Curves. The revenue curve for an item with CDF F is a function R that
maps a value v to the revenue obtained by posting a price of v for that item when
buyer values are drawn from the distribution F . Formally, R(v) := v · [1− F (v)].

Reserve Prices. The monopoly reserve price for an item where buyer values are
drawn from F and has revenue curve R(·) is r ∈ argmaxpR(p).

Quantile Space. We can define the quantile of a value qF (v) as probability that a
buyer has value at least v: qF (v) = 1−F (v). Then, for a quantile q ∈ [0, 1], we define
the value corresponding to q as the unique value

vF (q) = F−1(1− q) = sup
{
v | 1− F (v) ≤ q

}
.

We can redefine the revenue curve in quantile space as R(q) = q · vF (q).

Virtual Values. Myerson’s virtual valuation functionϕ(·) is defined so thatϕ(v) :=

v − 1−F (v)
f(v)

. This is the negative derivative of the revenue curve in quantile space:
− d
dq
R(q) = ϕ(q) = ϕ(v) where v = vF (q).

Regularity. We say that a distribution F satisfies regularity if the virtual values ϕ(·)
for this distribution are monotone non-decreasing, or equivalently, if the revenue
curve in quantile space R(q) is concave.

Ironing. When a distribution does not satisfy the regularity assumption, we instead
need to iron the virtual values.

The ironed revenue curve denoted R̂(·) for a revenue curveR(·) is the least concave
upper bound on the revenue curve R(·) in quantile space. A point v is ironed if
R̂(qF (v)) 6= R(qF (v)). We say that [a, b] is an ironed interval if R̂(qF (a)) = R(qF (a)),
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R̂(qF (b)) = R(qF (b)), and R̂(qF (v)) 6= R(qF (v)) for all v ∈ (a, b), where if v ∈ (a, b),
then a and b are the lower and upper endpoint of the ironed interval, respectively.

The ironed virtual values denoted ϕ̂(·) for original virtual values ϕ(·) are the
negative derivative of the ironed revenue curve in quantile space. That is, ϕ̂(q) =

− d
dq
R̂(q). The ironed virtual values in value space are simply converted to value

space: ϕ̂(v) = ϕ̂(qF (v)).
Because ϕ̂(·) is the derivative of the least concave upper bound, then throughout

ironed intervals, the slope will be linear, and thus the derivative of R̂(q) and also
the ironed virtual values will be constant.

Virtual Welfare. Myerson [1981] proved that expected revenue is equal to expected
virtual welfare:

Revenue = Ev∼F

[∑
i

xi(v)ϕi(vi)

]
.

This is the “social welfare” for an allocation computed with the virtual values
instead of with the buyers’ actual values. Then if a mechanism designer wishes to
maximize expected revenue, she can instead maximize expected virtual welfare,
and can express the expected revenue objective without using payment variables.
We re-derive this here. The second equality uses the payment identity, and the rest
is just algebra.

Evi∼Fi
[pi(v)] =

∫ ∞
0

fi(vi)pi(v)dvi

=

∫ ∞
0

fi(vi)

[
vixi(v)−

∫ vi

0

xi(z,v−i)dz

]
dvi

=

∫ ∞
0

fi(vi)vixi(v)−
∫ ∞

0

x(vi,v−i)

∫ ∞
vi

fi(w)dwdvi

=

∫ ∞
0

fi(vi)vixi(v)−
∫ ∞

0

x(v) [1− Fi(vi)]

=

∫ ∞
0

fi(vi)xi(v)

[
vi −

1− Fi(vi)
fi(vi)

]
= Evi∼Fi

[xi(v)ϕi(vi)]
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Then

Revenue = Ev∼F

[∑
i

pi(v)

]
= Ev∼F

[∑
i

xi(v)ϕi(vi)

]
.

2.4 Lagrangian Duality

In this section, we provide the basics surrounding formulating a partial Lagrangian
primal and taking its dual, and understanding the properties of duality. We use
these properties in our duality techniques in chapters 3-5.

We begin with a standard maximization problem subject to constraints, which we
call the full primal. The set P here denotes feasibility constraints, while x represents
whatever our primal variables are.

Full primal:

max f(x)

s.t. Ax ≤ b (dual variable λ)

x ∈ P

We denote the optimal solution to the full primal as x∗; that is, x∗ ∈ argmaxAx≤b,x∈Pf(x).
We now form the partial Lagrangian primal by using the Lagrangian multiplier

λi for each constraint of the form (Ax)i ≤ bi and moving it into the objective, where
we now minimize over the multipliers λ. We leave all of the feasibility constraints
as is, and define L(x;λ) as this new objective.

Lagrangian Primal:

max
x∈P

min
λ≥0

L(x;λ) = max
x∈P

min
λ≥0

f(x) + λT (b− Ax)

By reversing the order of the max and the min, we obtain the dual minimization
problem. We notate this dual problem as D(λ).

Lagrangian Dual:

min
λ≥0

D(λ) = min
λ≥0

max
x∈P

f(x) + λT (b− Ax)
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We denote the optimal dual solution as λ∗ ∈ argminλ≥0D(λ).
We say that x, λ satisfy complementary slackness if λi ≥ 0 =⇒ bi − (Ax)i = 0.

Relaxation. First, we observe that the (partial) Lagrangian Primal is in fact a relax-
ation of the full primal. For any feasible x, λ—that is,Ax ≤ b, x ∈ P , and λ ≥ 0—then
f(x) ≤ L(x;λ).

Weak Duality. The value of the full primal is always upper-bounded by the value
of the dual problem. Specifically, the value of the full primal is at most f(x∗) by
definition, and any feasible dual solution must satisfy λ ≥ 0, so the dual objective is
larger: f(x∗) ≤ D(λ).

Proof.

f(x∗) ≤ f(x∗) + λT (b− Ax∗) λ ≥ 0, Ax∗ ≤ b

≤ max
x∈P

f(x) + λT (b− Ax) x∗ ∈ P

= D(λ)

Strong Duality. Strong duality implies that the value of the full primal is equal to
the value of the Lagrangian primal, and this is equal to the value of the Lagrangrian
dual, when they are all at their optimal solutions. However, strong duality is not a
given. We see below that if strong duality holds, there must exist a pair of primal,
dual solutions that are optimal. Further, if there exist an optimal pair, then strong
duality must hold. Either condition is sufficient to show the other exists.

An Optimal Pair implies Strong Duality. For any choice of dual variables λ̂, if
there exists x̂ that forms an optimal pair with λ̂, that is, x̂ such that:

1. x̂ ∈ argmaxx∈PL(x; λ̂) (x̂ is optimal)

2. Ax̂ ≤ b (x̂ satisfies the Lagrangified constraints)

3. x̂, λ̂ satisfy complementary slackness

then strong duality holds, that is, D(λ̂) = f(x∗).
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Proof.

D(λ̂) = max
x∈P
L(x, λ̂)

= f(x̂) + λ̂∗(b− Ax̂) by (1)

= f(x̂) by (3)

≤ f(x∗) by (2), x ∈ P

Strong Duality implies an Optimal Pair. If strong duality holds, that is, minλ≥0D(λ) =

f(x∗), then there exists x̂ such that

1. x̂ ∈ argmaxxL(x;λ∗)

2. Ax̂ ≤ b

3. x̂, λ∗ satisfy complementary slackness

4. f(x̂) = f(x∗).

Proof. From weak duality, we know that

min
λ≥0

D(λ) = D(λ∗) ≥ L(x∗, λ∗) ≥ f(x∗).

These inequalities must all hold with equality for the premise to hold. The first
inequality’s tightness implies condition (1), and the second inequality’s tightness
implies condition (3). Condition (2) is true by the definition of x∗.

For further background on Lagrangian duality, see [Rockafellar, 1974].
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3 The FedEx Problem

“Remember that Time is Money”

— Benjamin Franklin in Advice to a Young Tradesman (1748)

3.1 Introduction

Consider the pricing problem faced by FedEx. Each of their customers has a deadline
d by which he needs his package to arrive, and a value v for receiving the package
by the deadline. The customer’s utility for getting his package shipped by day i at a
price of p is v − p if i ≤ d (i.e., it is received by his deadline) and −p otherwise. Of
course, a customer’s (v, d) pair is the private information of the customer. We study
the Bayesian setting, where this pair (v, d) is drawn from a prior distribution known
to FedEx, and address the question of optimal (revenue maximizing) mechanism
design. Note that the prior distribution may be arbitrarily correlated.

Suppose that FedEx offers a discrete set of shipping options (1-day, 2-day, 3-day,
up tom-day shipping). The prior that FedEx has on its customer’s needs is given by a
probability distribution (q1, q2, . . . , qm), where qi is the probability that the customer
has a deadline i days from now, and a set of marginal value distributions, where Fi,
for 1 ≤ i ≤ m, is the distribution of values given that the customer’s deadline is i.

We consider the single agent problem in this chapter, or equivalently, the setting
where FedEx sells to identically drawn buyers and has constraints on the number of
buyers it can supply. We obtain a closed form, clean, and optimal auction for this
setting. Our work adds to the relatively short list of multi-parameter settings where
a closed form solution is known. (See related work below for more on this.)

The pricing problem we consider is extremely natural and arises in numerous
scenarios, whether it is Amazon.com providing shipping options, Internet Service
Providers offering bandwidth plans, or a myriad of other settings in which a seller
can price discriminate or otherwise segment her market by delaying service, or
providing lower quality/cheaper versions of a product. In particular, this setting is
relevant whenever a customer has a value and a sensitivity to time or some other

This chapter is based on joint work with Amos Fiat, Anna Karlin, and Elias Koutsoupias in a
paper by the same title which appeared at EC 2016 [FGKK ’16].
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feature of service. A “deadline” represents the base level of need, imposed on a
buyer by outside circumstances, whereas a valuation represents the buyer’s own
willingness to pay. It is important to understand how buyer deadline constraints
impact the design of auctions and what leverage they give to the auctioneer to extract
more revenue.

3.1.1 Related Work

The FedEx setting is a variant of price discrimination in which the customers are
grouped by their deadline. Price discrimination offers different prices to users with
the goal of improving revenue [Bergemann, Brooks, and Morris, 2015]. Alterna-
tively one can view the FedEx problem as a multi-dimensional optimal auction
problem. There are two ways to express the FedEx problem in this way. First, as a
2-dimensional (value × deadline) problem of arbitrary joint distribution in which
the second variable takes only integer values in a bounded interval. Alternatively,
as a very special case of the m-dimensional unit-demand problem with correlated
values (the customer buys a shipping option among the m choices)—his value for
the first d options is v, and for the last m− d is 0.

There is an extensive body of literature on optimal auction design. The seminal
work of Myerson [1981] has completely settled the case of selling a single item
to multiple bidders and extends directly to the more general framework of single-
parameter settings. Note that Riley and Zeckhauser [1983] also prove that the optimal
single-parameter mechanism is deterministic, and that Bulow and Roberts [1989]
are responsible for the interpretation of virtual values as a marginal contribution to
revenue.

The most complicated part of Myerson’s solution is his handling of distributions
that are not regular by “ironing” them, that is, by replacing the revenue curves by
their upper concave envelope. Myerson’s ironing is done in quantile space. In this
work, we also need to iron the revenue curves, but we need to do this in value space.

Extending Myerson’s solution to the multi-dimensional case has been one of the
most important open problems in Microeconomics. For the case of unit-demand
agents, a beautiful sequence of papers [Chawla, Hartline, and Kleinberg, 2007; Briest
et al., 2015; Chawla, Malec, and Sivan, 2015; Chawla et al., 2010; Alaei, 2011; Cai and
Daskalakis, 2011] showed how to obtain approximately optimal auctions. For the
case of finite type spaces, [Cai, Daskalakis, and Weinberg, 2012, 2013a,b] are able to
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use linear and convex programming techniques to formulate and solve the optimal
auction problem. This gives a black-box reduction from mechanism to algorithm
design that yields a PTAS for revenue maximization in unit-demand settings. For
the case of additive agents, additional recent breakthroughs [Hart and Nisan, 2017;
Li and Yao, 2013; Babaioff et al., 2014; Yao, 2015; Cai et al., 2016; Cai and Huang,
2013] have also resulted in approximately optimal mechanisms. See Section 5.1.1 for
more details on this line of work.

But if we insist on optimal auctions for continuous probability distributions,
no general solution is known for the multi-dimensional case—even for the two-
dimensional single-bidder case—and it is very possible that no such simple solution
exists for the general case. One of the reasons that the multi-dimensional case is
so complex is that optimal auctions are not necessarily deterministic [Pavlov, 2011;
Thanassoulis, 2004; Briest et al., 2015; Hart and Reny, 2012; Hart and Nisan, 2013;
Manelli and Vincent, 2006; Pycia, 2006; Daskalakis et al., 2013]. The optimal auction
for the FedEx problem also turns out to be randomized with exponentially many
different price levels in the worst case [Saxena et al., 2018].

There are some relevant results that solve special cases of the two-parameter
setting. One of the earliest works is by Laffont, Maskin, and Rochet [1987] who
study a distant variant of the FedEx problem. In their problem, the bidder has two
parameters, a and b, each uniformly distributed on [0, 1], and the bidder’s utility
function is very specifically the quadratic function ax− 1

2
(b+ 1)x2 − p. Here, x is a

single-dimensional allocation variable and p is the payment variable. The idea is
that both the slope and the intercept of the buyer’s demand curve are unknown to
the seller. To solve this problem, Laffont et al. come up with a change of variable
technique to use only one variable when solving for the allocation in both param-
eters. By solving the optimization problem and the resulting integration by hand
with this technique, they provide a highly non-trivial closed-form allocation rule,
demonstrating that even the simplest independent two-parameter settings are far
more difficult than single-parameter settings.

McAfee and McMillan [1988] study a generalization of this problem. First,
they characterize incentive-compatibility precisely in direct, deterministic, and
differentiable mechanisms. Then, they reference a notion of “single-crossing” which
says that the marginal rate of substitution1, must be monotone increasing in the

1This is equal to the derivative of utility with respect to the allocation divided by the negative
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buyer’s type. McAfee and McMillan generalize this condition to multi-parameter
settings, and then extend the analysis of Laffont et al. (using the same change of
variables technique) to any number of variables if they satisfy generalized single-
crossing and other small conditions. However, their analysis only applies when the
optimal mechanism is deterministic. Finally, McAfee and McMillan also consider the
setting where a buyer has independent valuations for m heterogenous items. They
prove that under a “regularity” condition2, for m = 2, the optimal mechanism is
deterministic, and they further reason from prior results that the optimal mechanism
would set a price for each item individually as well as the grand bundle.

These initial results were followed by more general results. In particular, Hagh-
panah and Hartline [2015] consider the problem of selling a product with multiple
quality levels to unit-demand bidders. The mechanism they consider is selling
only the highest quality product at a posted price. (In the FedEx problem, this
corresponds to having a single price for every shipping option.) When the buyers’
value distributions have a specific type of positive correlation, then this mechanism
is optimal, because the high-valued customers are less quality-sensitive, and thus
will not pay a premium for a different outcome. Haghpanah and Hartline solve
for when this mechanism is a point-wise virtual value maximizer, with expected
revenue equal to virtual welfare, and then solve for the paths of tight IC constraints
to integrate over, effectively reverse engineering the virtual value functions. This ap-
proach also corresponds to proving when bundling is optimal in particular additive
settings. Their work generalizes results from Armstrong [1996].

Daskalakis et al. [2017] establish a duality framework where the primal is ex-
pressed in terms of utility and a transformed measure µ of the buyer distributions,
and the dual is an optimal transport problem. The dual variables are a measure µ′

that stochastically dominate the primal measure µ, and the objective is the distance
between the positive part of the measure µ′+ and the negative part of the measure µ′−.
First, Daskalakis et al. establish that strong duality holds in their duality framework,
so the dual can be used to solve for or certify the optimal primal. Then, using their
duality framework, for any mechanism with a finite menu size (number of out-
comes), they give a characterization in terms of the stochastic dominance conditions
on the measure µ. One application of this result proves that for m items distributed
derivative of utility with respect to payment. This also the negative shadow price.

2They assume that t · f ′(t) + (m+ 1)f(t) ≥ 0. Note that this is not Myerson’s regularity condition,
but would be if the (m+ 1) were replaced by 1.
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i.i.d. on [c, c+ 1] for large enough c, grand bundling is optimal.
Our approach is based on a duality framework. Two such frameworks have been

proposed. The first framework by Daskalakis et al. [2017] expresses the primal in
terms of utility and a transformed measure µ of the buyer distributions, and the
dual is an optimal transport problem. The dual variables are a measure µ′ that
stochastically dominate the primal measure µ, and the objective is the distance
between the positive part of the measure µ′+ and the negative part of the measure µ′−.
First, Daskalakis et al. establish that strong duality holds in their duality framework,
so the dual can be used to solve for or certify the optimal primal. Then, using their
duality framework, for any mechanism with a finite menu size (number of outcomes),
they give a characterization in terms of the stochastic dominance conditions on the
measure µ. One application of this result proves that for m− 1 items distributed
i.i.d. on [c, c+ 1] for large enough c, grand bundling is optimal.

The second framework is by Giannakopoulos and Koutsoupias [2014], which is
based on expressing the revenue maximization problem as an optimization problem
in terms of utility functions and their partial derivatives. They find primal and dual
variables that are both feasible and also satisfy complementary slackness, and thus
via weak duality and complementarity, have equal objectives. Using their framework,
they prove that the Straight-Jacket-Auction3 is optimal for an additive bidder whose
item valuations are i.i.d. from U [0, 1] for up to six items. In [Giannakopoulos and
Koutsoupias, 2015], the authors subsequently use their framework to give closed-
form optimal allocation and payment rules for several independent non-identical
two-item problems (where the distributions are from monomial or exponential
families over [0, H]), and the mechanisms are no longer deterministic. The duality
framework of Giannakopoulos and Koutsoupias is a fairly general approach, but
their applications still require fairly strong assumptions about the distributions in
order to make progress on characterizing optimal auctions. Our solution of the
FedEx problem follows this latter duality framework.

For much more on both exact and approximate optimal mechanism design, see
[Daskalakis, 2015; Chawla and Sivan, 2014; Roughgarden, 2015; Hartline, 2013; Cai,
Daskalakis, and Weinberg, 2011]. For background on duality in infinite linear and

3The Straight-Jacket-Auction for m items is a deterministic mechanism where a price is set for
every bundle size, bound by sale probabilities. The price for the bundle of size r, p(m)

r , is such that,
given prices p(m)

1 through p(m)
r−1 already set, a buyer with value v ∼ [0, 1]r × 0m−r will not buy any

bundle of size r or smaller with probability 1− r
m+1 .
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convex programs, see e.g., [Anderson and Nash, 1987; Luenberger, 1997].

3.1.2 Our Contribution

Our result is one of the first explicit closed-form generalizations of [Myerson, 1981]
to multi-parameter settings with arbitrary (joint) distributions, and contributes to
recent breakthroughs in this space. We use a duality framework where we prove
optimality by finding primal and dual solutions that satisfy sufficient conditions.
The optimal primal and dual variables have an interesting inductive structure,
and the allocation rule is potentially randomized over at most 2i−1 prices on i-day.
Our approach strengthens the emerging understanding that duality is useful for
determining the structure of the optimal auction in non-trivial settings, in addition
to its use in analyzing the auction.

In Myerson’s setting, the “ironing” of revenue curves and virtual valuations
to determine the optimal auction is required to enforce incentive compatibility
constraints among multiple bidders. In our setting, we need a form of ironing even
for one bidder in order to enforce incentive compatibility constraints among the
multiple options. This work also suggests that ironing is one of the biggest hurdles
in extending Myerson to more general settings.

3.2 Preliminaries

As discussed above, the type of a customer is a (value, deadline) pair. An auc-
tion takes as input a reported type t = (v, d) and determines the shipping date
in {1, . . . ,m} and the price. We denote by ai(v) the probability that the package
is shipped by day i when the agent reports (v, i), and by pi(v) the corresponding
expected payment (the expectation is taken over the randomness in the mechanism).

Our goal is to design an optimal mechanism for this setting. By the revelation
principle, we can restrict our attention to incentive compatible mechanisms. In this
setting, when an agent with type (v, i) reports a type of (v′, i′), he has utility

u(v′, i′ | v, i) =

vai′(v′)− pi′(v′) if i′ ≤ i

−pi′(v′) otherwise.
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The incentive compatibility requirement is that

u(v, i) ≥ u(v′, i′ | v, i) ∀v′, i′. (3.1)

We also require individual rationality, i.e., u(v, i) ≥ 0 for all (v, i). Without loss of
generality, ai(v) is the probability that the package is delivered on day i, since any
incentive compatible mechanism which delivers a package early can be converted
to one that always delivers on the deadline, while retaining incentive compatibility
and without losing any revenue.

For each fixed i, this implies the standard (single parameter) constraints [Myerson,
1981], namely

∀i, ai(v) is monotone weakly increasing and in [0, 1]; (3.2)

∀i, pi(v) = vai(v)−
∫ v

0

ai(x)dx and hence u(v, i) =

∫ v

0

ai(x)dx. (3.3)

Clearly no agent would ever report i′ > i, as this would result in non-positive utility.
However, we do need to make sure that the agent has no incentive to report an
earlier deadline, and hence another IC constraint is that for all 2 ≤ i ≤ m:

u(v, i− 1|v, i) ≤ u(v, i) (3.4)

which is equivalent to∫ v

0

ai−1(x)dx ≤
∫ v

0

ai(x)dx ∀i s.t. 1 < i ≤ m. (3.5)

We sometimes refer to this as the inter-day IC constraint. Since ai(v) is the probability
of allocation of i-day shipping given report (v, i), constraints (3.2), (3.3) and (3.5) are
necessary and sufficient, by transitivity, to ensure that

u(v, i) ≥ u(v′, i′|v, i)

for all possible misreports (v′, i′).

The prior. We assume that the agent’s (value, deadline) comes from a known
joint prior distribution F . Let qi be the probability that the customer has a deadline
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i ∈ {1, . . . ,m}, that is,
qi = Pr(v,d)∼F [d = i]

and letFi(·) be the marginal distribution function of values for bidders with deadline
i. That is,

Fi(x) = Pr(v,d)∼F [v ≤ x | d = i].

We assume that Fi is atomless and strictly increasing, with density function defined
on [0, H]. Let fi(v) be the derivative of Fi(v).

The objective. Let ϕi(v) = v − 1−Fi(v)
fi(v)

be the virtual value function for v drawn
from distribution Fi. Applying the Myerson payment identity (3.3) implies that the
expected payment of a customer with deadline i is

Ev∼Fi
[pi(v)] = Ev∼Fi

[ϕi(v)ai(v)].

Thus, we wish to choose monotone allocation rules ai(v) for days 1 ≤ i ≤ m, so as
to maximize

E(v,i)∼F [pi(v)] =
m∑
i=1

qiEv∼Fi
[pi(v)] =

m∑
i=1

qiEv∼Fi
[ϕi(v)ai(v)] =

m∑
i=1

qi

∫ H

0

ϕi(v)fi(v)ai(v)dv,

subject to (3.2) and (3.5).

A trivial case and discussion. If we knew that the customer that would arrive
would have deadline i and we could thus condition on this event, ensuring that his
value is drawn from the marginal distribution Fi, then the optimal pricing would
be trivial, as this is a single-agent, single-item auction. In this case, the optimal
mechanism for such a customer is to set the price for service by day i to the reserve
price ri for his prior. If we just had a number of single-dimensional problems, one
for each deadline, we would want to set a price of ri for each i-day shipping option.
If it is the case that ri ≥ ri+1 for each i, then the entire Fedex problem is trivial, since
setting ri as the price for i-day shipping satisfies all of the IC constraints, and this
pointwise optimizes each conditional distribution.

Note that even should the marginal distribution for buyer values for 1-day ship-
ping stochastically dominate the marginal distribution for 2-day shipping and so on,
the later shipping options may still have higher reserve prices. For example, if F2 is
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uniform over the set {1, 10}, the reserve is 10. If F1 is uniform over the set {9, 10},
the reserve is 9. Hence, we do not make the assumption that the reserve prices are
weakly decreasing with the deadline.

In fact, we do not make the assumption of stochastic domination either in order to
be fully general. The prior F captures the result of random draws from a population
consisting of a mixture of different types. Obviously any particular individual with
deadline i is at least as happy with day i− 1 service as with day i service, but two
random individuals may have completely uncorrelated needs. To give an example,
an individual ordering a last minute birthday present may have a lower value than an
individual scheduling the delivery of surgical equipment that is needed to perform
open heart surgery in three weeks time. In fact, for more valuable packages, one
could imagine that people take the time to plan ahead.

Another factor has to do with costs. It is likely that the cost that FedEx incurs for
sending a package within i days is higher than the cost FedEx incurs for sending
a package within i′ > i days, since in the latter case, for example, FedEx has more
flexibility about which of many planes/trucks to put the package on, and even may
be able to reduce the total number of plane/truck trips to a particular destination
given this flexibility. More generally, in other applications of this problem, the cost
of providing lower quality service is lower than the cost of providing higher quality
service. Thus, even if reserve prices tend to decrease with i, all bets are off once we
consider a customer’s value for deadline i conditioned on that value being above
the expected cost to FedEx of shipping a package by deadline i for each i.

In this chapter, we are not explicitly modeling the costs that FedEx incurs, the
optimization problems that it faces, the online nature of the problem, or any limits on
FedEx’s ability to ship packages. These are interesting problems for future research.
The discussion in the preceding few paragraphs is here merely to explain why the
problem remains interesting and relevant even in the with distributions that do not
have decreasing reserve prices in the deadlines. Further, note that in Figure 3.1,
FedEx actually did post a larger price for a later shipping option, implying that they
estimate the underlying distributions to have increasing reserve prices.4

4Of course, these prices are not incentive compatible, and the author that purchased shipping
when presented with these prices did in fact misreport her deadline.
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Figure 3.1: FedEx posted a higher price posted for a later shipping option, implying
the underlying distributions do not have decreasing reserve prices in the real world.
Note also that these prices are not incentive compatible.

3.3 Warm-up: The case of m = 2

Suppose that the customer might have a deadline of either one day or two days from
now. By the taxation principle, the optimal mechanism is a menu, and in this setting
consists of a (potentially randomized) price pi for having the package delivered i

days from now.
Let Ri(v) be the i-day revenue curve, that is, Ri(v) := v · [1 − Fi(v)]. Let ri :=

argmaxvRi(v) be the price at which expected revenue from a bidder with value
drawn from Fi is maximized, and let R∗i := Ri(ri) denote this maximum expected
revenue. Since R∗i is the optimal expected revenue from the agent [Myerson, 1981],
conditioned on having a deadline of i, then q1R

∗
1 + q2R

∗
2 is an upper bound on the

optimal expected revenue for the two-day FedEx problem. If r1 ≥ r2, then this
optimum is indeed achievable by an IC mechanism: just set the 1-day shipping price
p1 at r1 and the 2-day shipping price p2 at r2.

But what if r2 > r1? In this case, the inter-day IC constraint (3.5) is violated by
this pricing (a customer with i = 2 will pretend his deadline is i = 1).

Attempt #1: One alternative is to consider the optimal single price mechanism
(i.e., p1 = p2 = p). In this case, the optimal choice is clear:

p := argmaxv [q1R1(v) + q2R2(v)] , (3.6)

i.e., set the price that maximizes the combined revenue from both days. There are
cases where this is optimal, e.g., if both F1 and F2 are regular. A proof is given in
Subsection 3.4.2.
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Attempt #2: Another auction that retains incentive compatibility, and, in some
cases, improves performance is to set the 1-day price p1 at p and the 2-day price at

p2 := argmaxv≤p R2(v). (3.7)

However, even if we fix p1 = p, further optimization may be possible if F2 is not
regular.

Attempt #3: Consider the concave hull of R2(·), i.e., the ironed revenue curve.
If R2(v) is maximized at r2 > p and R2(·) is ironed at p, then offering a lottery on
2-day with an expected price of p yields higher expected revenue than offering any
deterministic 2-day price of p2. As we shall see, for this case, this solution is actually
optimal. (See Figure 3.2.)

However, if p > r2, (which is possible if F1 and F2 are not regular, even if r1 < r2),
then we will see that the optimal 1-day price is indeed higher than r2, but not
necessarily equal to p.

Attempt #4: If p > r2, set the 1-day price at

p1 := argmaxv≥r2 R1(v).

This should make sense: if we’re going to set a 1-day price above r2, we may as well
set the 2-day price at r2, but in that case, the 2-day curve should not influence the
pricing for 1-day (except to set a lower bound for it).

Admittedly, this sounds like a tedious case analysis, and extending this reasoning
to three or more days gets much worse. Happily, though, there is a nice, and
relatively simple way to put all the above elements together to describe the solution,
and then, as we shall see in Section 3.5, prove its optimality via a clean duality proof.

A solution for m = 2. Define R̂(·) to be the concave (ironed) revenue curve corre-
sponding to revenue curve R(·). We define the following combined revenue curve,
depicted in Figure 3.3. Let

R12(v) :=

q1R1(v) + q2R̂2(v) v ≤ r2

q1R1(v) + q2R2(r2) v > r2.
(3.8)
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Figure 3.2: A two-day case: Suppose that the optimal thing to do on 1-day is to offer
a price of p. In the upper left, we see the corresponding allocation curve a1(v). The
bottom left graph shows the revenue curve R2(·) for 2-day (the thin black curve)
and the ironed version R̂2(·) (the thick blue concave curve). Optimizing for 2-day
subject to the inter-day IC constraint

∫ v
0
a1(x)dx ≤

∫ v
0
a2(x)dx suggests that the most

revenue we can get from a deadline d = 2 customer is R̂2(p) on 2-day, which can be
done by offering the price of p with probability 1/3 and a price of p with probability
2/3 (since, in this example, p = (1/3)p + (2/3)p). This yields the pink allocation
curve a2(v) shown in the upper right. The fact that these curves satisfy the inter-day
IC constraint follows from the fact that the area of the two grey rectangles shown in
the bottom right are equal.

Note that because R̂2(·) is the least concave upper bound on R2(·) and by definition
of r2 that R̂2(r2) = R2(r2). The optimal solution is to set

p1 := argmaxvR12(v),

and then take
p2 := r2 if r2 ≤ p1 and E(p2) := p1 otherwise,

where the randomized case is implemented via the lottery as in the example of
Figure 3.2.
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The key idea: R12(v) describes the best revenue we can get if we set a price of v
for 1-day shipping as shown in Figure 3.3. Since r2 is the optimal 2-day price, if
we are going to set a price above r2 for 1-day shipping, then the remaining 2-day
optimization problem is unconstrained. On the other hand, if the 1-day price is
below r2, then it would constrain the 2-day price via the inter-day IC constraint (3.5),
and ironing the 2-day revenue curve may be necessary. This is precisely what the
definition of R12(·) in (3.8) does for us. The asymmetry between 1-day and 2-day,
specifically the fact that the 1-day curve is never ironed, whereas the 2-day curve is,
is a consequence of the inter-day IC constraint (3.5). We generalize this idea in the
next section to solve the m-day problem.

Figure 3.3: Left: The scaled revenue curve for deadline 1, q1R1(·). Right: The pink
curve is the scaled revenue curve for deadline 2, q2R2(·). The dotted curve represents
the ironed q2R̂2(·). At any possible 1-day price v, the highest pink point at v is the
best revenue that can be obtained from 2-day shipping given that a price of v is set
for 1-day. This is either the revenue from the ironed curve q2R̂2(v) or, when possible,
the revenue of setting a price of r2, which yields q2R2(r2). The higher green curve is
R12(·), the sum of the green curve from the left and the upper pink envelope, which
gives the combined revenue from setting a price of v for 1-day and then doing the
best thing for 2-day shipping.
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3.4 An optimal allocation rule

3.4.1 Preliminaries

As we discussed regarding the objective, our goal is to choose monotone allocation
rules ai(v) for days 1 ≤ i ≤ m so as to maximize

∑m
i=1 qi

∫ H
0
ϕi(v)fi(v)ai(v)dv.

For a distribution fi(·) on [0, H] with virtual value function ϕi(·) = v− 1−Fi(v)
fi(v)

, de-
fine γi(v) := qiϕi(v)fi(v). Then we aim to choose ai(v) to maximize

∑m
i=1

∫ H
0
γi(v)ai(v)dv.

Let Γi(v) =
∫ v

0
γi(x)dx. Observe that this function is the negative of the revenue

curve, that is, Γi(v) = −qiRi(v) = −qiv[1 − Fi(v)]. 5 Thus, Γi(0) = Γi(H) = 0 and
Γi(v) ≤ 0 for v ∈ [0, H].

Definition 1. For any function Γ, define Γ̂(·) to be the lower convex envelope 6 of
Γ(·). We say that Γ̂(·) is ironed at v if Γ̂(v) 6= Γ(v).

Since Γ̂(·) is convex, it is continuously differentiable except at countably many
points and its derivative is monotone (weakly) increasing.

Definition 2. Let γ̂(·) be the derivative of Γ̂(·) and let γ(·) be the derivative of Γ(·).

Claim 1. The following facts are immediate from the definition of lower convex
envelope (See Figure 3.4.):

• Γ̂(v) ≤ Γ(v) ∀v.

• Γ̂(vmin) = Γ(vmin) where vmin = argminvΓ(v). (This implies that there is no
ironed interval containing vmin.)

• γ̂(v) is an increasing function of v and hence its derivative γ̂′(v) ≥ 0 is non-
negative for all v.

• If Γ̂(v) is ironed in the interval [`, h] , then γ̂(v) is linear and γ̂′(v) = 0 in (`, h).

We next define the sequence of functions that we will need for the construction:
5Γi(v) = qi

∫ v

0
[xfi(x)− (1− Fi(x))] dx. Integrating the first term by parts gives

∫ v

0
xfi(x) dx =

vFi(v)−
∫ v

0
Fi(x) dx. Combining this with the second term yields Γi(v) = −qiv(1− Fi(v)).

6The lower convex envelope of function f(x) is the supremum over convex functions g(·) such that
g(x) ≤ f(x) for all x. Notice that the lower convex envelope of Γ(·) is the negative of the ironed
revenue curve R̂(v).
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0

h

H

Figure 3.4: The black curve is Γi(v), and its lower convex envelope Γ̂(v) is traced out
by the thick light blue line. The curve is ironed in the interval [`, h] (among others),
so in that interval, Γ̂(v) is linear, and thus has second derivative equal to 0.

Definition 3. Let

Γ≥m(v) := Γm(v) and r≥m := argminvΓ≥m(v).

Inductively, define, for i := m− 1 down to 1,

Γ≥i(v) :=

Γi(v) + Γ̂≥i+1(v) v < r≥i+1

Γi(v) + Γ̂≥i+1(r≥i+1) v ≥ r≥i+1

and r≥i := argminvΓ≥i(v).

The derivative of Γ≥i(·) is then

γ≥i(v) :=

γi(v) + γ̂≥i+1(v) v < r≥i+1

γi(v) v ≥ r≥i+1

.

Rewriting this yields

γ≥i(v)− γi(v) =

γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

. (3.9)

Consider whenm = 2. Since Γi(·) is the negative revenue curve for i-day shipping
scaled by the probability qi of drawing a customer with deadline i, then whenm = 2,
Γ̂2(·) is the scaled, negative, ironed, revenue curve for i-day shipping, and we aim
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to minimize it.
Now, we can observe that Γ≥1(v) is precisely the revenue from setting a price of

v for 1-day shipping and optimizing the revenue for 2-day shipping constrained
by the price of v set for 1-day shipping. Under this constraint, the best revenue
for 2-day shipping is attained by implementing the optimal price from the ironed
revenue curve for 2-day shipping that is at most v (using a lottery if needed). Then
deadline 2 customers contribute revenue−1 ·minp2≤v Γ̂2(p2). Observe the pink curve
in Figure 3.3: since Γ̂2(·) is concave, the minimum is achieved at min{v, r2}. This is
exactly what Γ≥1(v) accounts for: if v ≤ r2, then we get the revenue from setting a
price of v for 1-day shipping and the ironed revenue of v for 2-day shipping (possibly
via lottery), earning Γ1(v) + Γ̂2(v). If v ≥ r2, then we get the revenue from setting a
price of v for 1-day shipping and from setting the price of r2 for 2-day shipping.

For the general case, intuitively, these combined curves account for the fact that
when i-day shipping’s price is low enough to interfere (with respect to the inter-day
IC constraint) with the prices that we would like to set for options i+ 1 through m,
we need to consider the problem of setting all of these prices together. However,
when i-day’s price is high enough not to interfere with the later days, we can just
use the optimal choice on days i+ 1 throughm (from Γ≥i+1(r≥i+1)) and worry about
i-day shipping separately. They also take into account the ironing needed to ensure
incentive compatibility.

We can draw an analogy to the ironing in Myerson’s optimal auction for irregular
distributions. Using the ironed curves ensures incentive compatibility and gives an
upper bound on the optimal revenue. Myerson shows that this upper bound is in
fact achievable using randomization. Similarly, our combined and ironed curves
yield upper bounds on the revenue, and we show how to actually achieve these
upper bounds by implementing lotteries.

3.4.2 The allocation rule

We define the allocation curves ai(·) inductively. We use the curve Γ≥i(·) and the
constraint from the (i + 1)-day allocation rule to achieve exactly the revenue that
the Γ≥i(·) curves suggest. We will show later that they are optimal. Each allocation
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curve is piecewise constant. For 1-day shipping, set

a1(v) =

0 if v < r≥1,

1 otherwise.

Suppose that ai−1 has been defined for some i < m, with jumps at v1, . . . , vk, and
values 0 = β0 < β1 ≤ β2 . . . ≤ βk = 1. That is,

ai−1(v) =


0 if v < v1,

βj vj ≤ v < vj+1 1 ≤ j < k

1 vk ≤ v.

Thus, we can write

ai−1(v) =
k∑
j=1

(βj − βj−1)ai−1,j(v)

where

ai−1,j(v) =

0 if v < vj

1 v ≥ vj.

Next we define ai(v).

Definition 4. Let j∗ be the largest j such that vj ≤ r≥i. For any j ≤ j∗, consider two
cases:

• Γ̂≥i(vj) = Γ≥i(vj), i.e. Γ̂≥i not ironed at vj : In this case, define

ai,j(v) =

0 if v < vj

1 otherwise.
.

• Γ̂≥i(vj) 6= Γ≥i(vj): In this case, let

– vj := the largest v < vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed, and

– vj := the smallest v > vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed.

Let 0 < δ < 1 such that
vj = δvj + (1− δ)vj.
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1

1

Figure 3.5: This figure shows an example allocation curve ai−1(v) in purple, and
illustrates some aspects of Definition 4. The curves Γ≥i(v) and Γ̂≥i(v) are shown
directly below the top figure. In this case, r≥i ∈ [vj+1, vj+2), so j∗ = j + 1. The
bottom figure shows how ai,j(v) is constructed from ai−1,j(v).

Then Γ̂≥i(·) is linear between vj and vj :

Γ̂≥i(vj) = δΓ≥i(vj) + (1− δ)Γ≥i(vj).

Define

ai,j(v) =


0 if v < vj

δ vj ≤ v < vj

1 otherwise.
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Finally, set ai(v) as follows:

ai(v) =


∑j∗

j=1(βj − βj−1)ai,j(v) if v < r≥i,

1 v ≥ r≥i.

(3.10)

Remark: In order to continue the induction and define ai+1(v) we need to rewrite
ai(v) in terms of functions ai,j(v) that take only 0/1 values. This is straightforward.

An Alternate Description: Note that it is equivalent to view ai−1(·) as a random-
ization over prices where a price of vj is offered with probability (βj−βj−1). For each
possible price vj on day i− 1, we select the optimal choice for i-day shipping using
the negative revenue curve Γ̂≥i(·). That is, we determine pi,j = argminp≤vj Γ̂≥i(p),
which is equal to the best constrained price less than vj to set for i-day shipping to
earn revenue for all deadlines i through m, and we implement this price pi,j . Note
that by convexity, pi,j = min{r≥i, vj}. In the case that pi,j = vj and Γ̂≥i(·) is ironed
at vj , this price is implemented by randomizing over vj with probability δ and vj

with probability 1− δ. We multiply each price (or randomized two prices) for i-day
shipping with the probability that vj was offered for i− 1-day shipping, giving a
randomization over prices for i-day shipping as well, resulting in ai(·).

In Section 3.3 we mention that for m = 2 days, when the reserve prices are
increasing, that is, r1 < r2, and both distributions F1 and F2 are regular, the optimal
mechanism sets a single price. We now see that the optimal auction sets a price of
r≥1 on 1-day. Since F2 is regular, the negative revenue curve Γ2(·) is convex, so there
is no ironing. Then the best 2-day option is always a price. Furthermore, because F1

is regular and thus Γ1(·) is convex with its minimum r1 < r2, the minimum r≥1 of
Γ≥1 will occur between r1 and r2. Since r≥1 ≤ r2, then the best price on 2-day will
be precisely r≥1, so there will be a single price.

Note that for each possible price on day i−1 we could offer as many as two prices
on i-day, hence there is a trivial upper bound of 2i−1 options for i-day shipping.
Saxena et al. [2018] provides a matching lower bound.

In the special case that each combined curve Γ≥i(·) is convex for each i, then the
allocation rule will be a deterministic pricing. This occurs when each scales revenue
curve is concave, or when fi(v)ϕi(v) is monotone weakly increasing. This condition
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is called declining marginal revenues (DMR), and we discuss it further in Chapter 4.
However, even in this case, determining the allocation rule is more complicated
than one might imagine at first glance. For example, for three deadlines, the optimal
deterministic mechanism can require 1, 2, or 3 distinct prices, and determining how
many prices to use and how to set them is non-trivial using standard revenue curve
approaches. However, our definition of the curves Γ≥i(·) makes determining the
optimal pricing immediate.

Lemma 1. The allocation curves ai(·), for 1 ≤ i ≤ m, are monotone increasing from 0 to 1
and satisfy the inter-day IC constraints (3.5). Moreover, each ai(·) changes value only at
points where Γ̂≥i(·) is not ironed.

Proof. That the allocation curves ai(·) are weakly increasing, start out at 0, and end
at 1 is immediate from the fact that they are convex combinations of the monotone
allocation curves ai,j(·). Also, by construction, each ai(·) changes value only at points
where Γ̂≥i(v) is not ironed.

So we have only left to verify that∫ v

0

ai−1(x)dx ≤
∫ v

0

ai(x)dx.

From the discussion above, for v ≤ r≥i, we have

ai−1(v) =

j∗∑
j=1

(βj − βj−1)ai−1,j(v) and ai(v) =

j∗∑
j=1

(βj − βj−1)ai,j(v)

since ai−1,j(v) = 0 for v ≤ r≥i and j > j∗. Thus, it suffices to show that for each
j ≤ j∗ and v ≤ r≥i ∫ v

0

ai−1,j(x)dx ≤
∫ v

0

ai,j(x)dx.

If Γ̂≥i is not ironed at vj , then this is an equality. Otherwise, for v ≤ vj , the left
hand side is 0 and the right hand side is nonnegative. For vj ≤ v ≤ vj the left hand
side is (v − vj), whereas the right hand side is δ(v − vj). Rearranging the inequality
vj = δvj + (1− δ)vj ≥ δvj + (1− δ)v implies that v − vj ≤ δ(v − vj). This completes
the proof that (3.5) holds.

Notice that
∫ v

0
ai−1,j(x)dx =

∫ v
0
ai,j(x)dx for v < vj and v > vj , so ai−1(v) = ai(v)

unless Γ≥i is ironed at v, or v ≥ r≥i. We will use this fact in the proof of Claim 4
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below.

3.5 Proof of optimality

In this section, we prove that the allocation rules and pricing of the previous section
are optimal. To this end, we formulate our problem as an (infinite) linear program.
We discussed the objective and constraints of the primal program in Section 3.2, and
we have already shown above that our allocation rules are feasible for the primal
program. We then construct a dual program, and a feasible dual solution for which
complementary slackness holds. This implies strong duality holds, and thus, that
our solution is optimal.

3.5.1 The linear programming formulation

Recall the definitions from Section 3.2: The function γi(v) is the derivative of Γi(v) =∫ v
0
qiϕi(x)fi(x) dx, where ϕi(v) = v − 1−Fi(v)

fi(v)
is the i-day virtual value function and

qi is the fraction of bidders with deadline i. Similarly γ̂i(v) is the derivative of Γ̂i(v).
We use [m] to denote the set of integers {1, . . . ,m}.

The Primal

Variables: ai(v), for all i ∈ [m], and all v ∈ [0, H].

Maximize
m∑
i=1

∫ H

0

ai(v)γi(v)dv

Subject to∫ v

0

ai(x)dx−
∫ v

0

ai+1(x)dx ≤ 0 ∀i ∈ [m− 1] ∀v ∈ [0, H] (dual variables αi(v))

ai(v) ≤ 1 ∀i ∈ [m] ∀v ∈ [0, H] (dual variables bi(v))

−a′i(v) ≤ 0 ∀i ∈ [m] ∀v ∈ [0, H] (dual variables λi(v))

ai(v) ≥ 0 ∀i ∈ [m] ∀v ∈ [0, H].

Note that a′i(v) denotes d
dv
ai(v).
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The Dual

Variables: bi(v), λi(v), for all i ∈ [m], and all v ∈ [0, H], αi(x) for i ∈ [m− 1] and all
x ∈ [0, H].

Minimize
∫ H

0

[b1(v) + · · ·+ bm(v)] dv

Subject to

b1(v) + λ′1(v) +

∫ H

v

α1(x)dx ≥ γ1(v) ∀v ∈ [0, H] (primal var a1(v))

bi(v) + λ′i(v) +

∫ H

v

αi(x)dx−
∫ H

v

αi−1(x)dx ≥ γi(v) ∀v ∈ [0, H], i = 2, . . . ,m− 1

(primal var ai(v))

bm(v) + λ′m(v)−
∫ H

v

αm−1(x)dx ≥ γm(v) ∀v ∈ [0, H] (primal var am(v))

λi(H) = 0 ∀i ∈ [m]

αi(v) ≥ 0 ∀v ∈ [0, H], i ∈ [m− 1]

bi(v), λi(v) ≥ 0 ∀i ∈ [m]∀v ∈ [0, H].

Note that λ′i(v) denotes d
dv
λi(v).

3.5.2 Conditions for strong duality

As long as there are feasible primal and dual solutions satisfying the following
conditions, strong duality holds. See Appendix A.1 for a proof that these conditions
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are sufficient.

ai(v) > 0 ⇒ λi(v) continuous at v i ∈ [m] (3.11)

ai(v) < 1 ⇒ bi(v) = 0 i ∈ [m] (3.12)

a′i(v) > 0 ⇒ λi(v) = 0 i ∈ [m] (3.13)∫ v

0

ai(x)dx <

∫ v

0

ai+1(x)dx ⇒ αi(v) = 0 i ∈ [m− 1] (3.14)

bi(v) + λ′i(v) +

∫ H

v

αi(x)dx−
∫ H

v

αi−1(x)dx > γi(v) ⇒ ai(v) = 0 i = 2, . . . ,m− 1 (3.15)

b1(v) + λ′1(v) +

∫ H

v

α1(x)dx > γ1(v) ⇒ a1(v) = 0 (3.16)

bm(v) + λ′m(v)−
∫ H

v

αm−1(x)dx > γm(v) ⇒ am(v) = 0 (3.17)

We allow a′i(v) ∈ R ∪ {+∞}, otherwise we could not even encode a single-price
auction.7

3.5.3 The proof

Theorem 2. The allocation curves presented in Subsection 3.4.2 are optimal, that is, obtain
the maximum possible expected revenue.

Proof. To prove the theorem, we verify that there is a setting of feasible dual variables
for which all the conditions for strong duality hold. To this end, set the variables as
follows:

λi(v) = Γ≥i(v)− Γ̂≥i(v) (3.18)

bi(v) =

0 v < r≥i

γ̂≥i(v) v ≥ r≥i
(3.19)

αi(v) =

γ̂′≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(3.20)

7In particular, ai(v) may have (countably many) discontinuities, in which points a′i(v) = +∞ > 0.
However, in our proof of optimality a′i(v) appears only as a factor of the product a′i(v)λi(v). Every
time a′i(v) = +∞, the corresponding dual value of λi(v) is 0—by condition (4.3). See also Appendix
A.1.
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The dual variables are selected precisely to satisfy complementary slackness
conditions and therefore ensure optimality.

The dual variable λi(·) corresponds to the monotonicity constraint on ai(·) in the
primal. Since Γ≥i(·) is the curve used to set ai, it is intuitive the dual variable λi(v)

corresponds to how much we needed to iron Γ≥i(v) for ai(·) to be monotone at v.
There are m constraints (other than non-negativity) in the dual program, one

corresponding to each deadline. We set them so that the constraint for m-day
shipping is satisfied with equality. We can then add constraints m and m− 1, and
the remaining set of m− 1 constraints correspond precisely to an m− 1 deadline
problem. Herein lies the basis for the induction.

From Claim 1, it follows that λi(v), αi(v) ≥ 0 for all v and i. Since r≥i is the
minimum of Γ̂≥i(·), we have γ̂≥i(r≥i) = 0. Moreover, since γ̂≥i(·) is increasing,
bi(v) ≥ 0 for all v and i.

Taking the derivative of (3.18), and using Equation (3.9), we obtain:

γi(v)− λ′i(v) =

γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

(3.21)

γm(v)− λ′m(v) = γ̂m(v) (3.22)

Also, using (3.20) and the fact that γ̂≥i+1(r≥i+1) = 0, we get:

Ai(v) :=

∫ H

v

αi(x) dx =

−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(3.23)

Condition (3.11) from Section 3.5.2 holds since Γ≥i(v) and Γ̂≥i(v) are both continuous
functions. The proofs of all remaining conditions for strong duality from Section 3.5.2
can be found below.

Claim 2. Condition (4.2): For all i and v, ai(v) < 1 =⇒ bi(v) = 0.

Proof. If ai(v) < 1, then v < r≥i, so by construction, bi(v) = 0.

Claim 3. Condition (4.3): For all i and v, a′i(v) > 0 =⇒ λi(v) = 0.

Proof. From Subsection 3.4.2, a′i(v) > 0 only for unironed values of v, at which
λi(v) = 0.
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Claim 4. Condition (4.4): For all i and v,
∫ v

0
ai(x)dx <

∫ v
0
ai+1(x)dx =⇒ αi(v) = 0.

Proof. As discussed at the end of the proof of Lemma 1,
∫ v

0
ai(x)dx =

∫ v
0
ai+1(x)dx

unless Γ≥i+1 is ironed at v, or v ≥ r≥i. In both of these cases αi(v) = 0 (by part 4 of
Claim 1 and Definition 3.20, respectively).

Claim 5. Conditions (4.5)- (3.17) and dual feasibility: For all i and v, ai(v) > 0 =⇒
the corresponding dual constraint is tight, and the dual constraints are always
feasible.

Proof. Rearrange the dual constraint bi(v) + Ai(v)− Ai−1(v) + λ′i(v) ≥ γi(v) to

bi(v)− Ai−1(v) ≥ γi(v)− λ′i(v)− Ai(v).

Fact 1: For i ∈ [m− 1], γi(v)− λ′i(v)− Ai(v) = γ̂≥i(v) for all v. To see this use (3.21)
and (3.23):

γi(v)−λ′i(v) =

γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

Ai(v) =

−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

Fact 2: For i ∈ {2, . . . ,m}, bi(v)− Ai−1(v) = γ̂≥i(v) for all v.

bi(v) =

0 v < r≥i

γ̂≥i(v) v ≥ r≥i
− Ai−1(v) =

γ̂≥i(v) v < r≥i

0 v ≥ r≥i

Hence for i ∈ {2, . . . ,m− 1}, bi(v)− Ai−1(v) = γi(v)− λ′i(v)− Ai(v) for all v.
For i = m, since γ≥m = γm, and γm(v) − λ′m(v) = γ̂m(v). Combining this with

Fact 2 above, we get that bm(v)− Am−1(v) + λ′m(v) = γm(v) for all v.
Finally, for i = 1, using Fact 1, for v < r≥1, we get

b1(v) = 0 ≥ γ̂≥1(v) = γ1(v)− λ′1(v)− A1(v)

which is true for v < r≥1. For v ≥ r≥1, we get

b1(v) = γ≥1(v) = γ1(v)− λ′1(v)− A1(v),

so the dual constraint is tight when a1(v) > 0 as this starts at r≥1.
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The above claims prove that this dual solution satisfies feasibility and all com-
plementary slackness and continuity conditions from Section 3.5.2 hold.

Figure 3.6: This figure illustrates what some of the dual variables might be for the
case of two days when r≥1 < r2. The upper figure plots the functions γ̂12(v) and γ̂2(v),
and the lower figure shows b1(v) in dark grey, b2(v) in pink and A1(v) =

∫ H
v
α1(x)dx

in green. Note that up to r2, the function A1(v) = −γ̂2(v).

3.6 Closed-Form Virtual Values

By taking the partial Lagrangian of our primal from subsection 3.5.1, we can view
the optimal mechanism as an expected virtual welfare maximizer. By plugging in
our closed-form dual variables, we produce closed-form virtual value functions. We
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use our above approach combined with the approximation of Cai et al. [2016], only
used for optimal revenue instead of approximation.

We multiply each constraint (aside from feasibility) by its dual variable and move
it into the objective function, minimizing over these non-negative dual variables.
Recall that basics of Lagrangian duality are outlined in Section 2.4. The resulting
partial Lagrangian primal is:

max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

L(a, λ)

where

L(a, λ) :=
m∑
i=1

∫ H

0

ai(v)γi(v)dv +
m−1∑
i=1

∫ v

0

αi(v)

[∫ v

0

ai+1(x)dx−
∫ v

0

ai(x)dx

]
dv

+
m∑
i=1

∫ v

0

λi(v) [a′i(v)] dv

Recall that Ai(v) =
∫ H
v
αi(x)dx. Then, using this notation, as well as integration by

parts on the λ terms, and aggregating the a terms, we can rewrite L as follows. (This
is similar to the steps we take in the proof of strong duality in Appendix A.1.)

L(a, λ) =

∫ H

0

[a1(v)γ1(v) + λ1(v)a′1(v)− a1(v)A1(v)] dv

+
m−1∑
i=2

∫ H

0

[ai(v)γi(v) + λi(v)a′i(v) + ai(v)Ai−1(v)− ai(v)Ai(v)] dv

+

∫ H

0

[am(v)γm(v) + λm(v)a′m(v) + am(v)Am−1(v)] dv

=

∫ H

0

f1(v)a1(v)

[
γ′1(v)

f1(v)
− λ′1(v)

f1(v)
− A1(v)

f1(v)

]
dv

+
m−1∑
i=2

∫ H

0

fi(v)ai(v)

[
γ′i(v)

fi(v)
− λ′i(v)

fi(v)
− Ai(v)

fi(v)
+
Ai−1(v)

fi(v)

]
dv

+

∫ H

0

fm(v)am(v)

[
γ′m(v)

fm(v)
− λ′m(v)

fm(v)
+
Am−1(v)

fm(v)

]
dv
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This gives that L is equal to expected virtual welfare for the following virtual values:

φi(v) =
γ′i(v)

fi(v)
− λ′i(v)

fi(v)
− Ai(v)

fi(v)
+
Ai−1(v)

fi(v)
for i ∈ {2, . . . ,m− 1},

φ1(v) =
γ′1(v)

f1(v)
− λ′1(v)

f1(v)
− A1(v)

f1(v)
, and φm(v) =

γ′m(v)

fm(v)
− λ′m(v)

fm(v)
+
Am−1(v)

fm(v)
.

Recall that our partial Lagrangian primal is of the form

max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

L(a, λ) = max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

m∑
i=1

fi(v)ai(v)φi(v).

Note that φ depends on λ, α, and we must find the variables that minimize these
functions. We plug in our optimal dual variables from our closed-form solution to
FedEx, giving closed-form virtual values:

φ1 = γ̂1(v)/f1(v) and φi =

0 v < r≥i

γ̂≥i(v)/fi(v) v ≥ r≥i
for i ∈ {2, . . . ,m}.

Then, the allocation rule that maximizes expected virtual welfare for these virtual
value functions is precisely the optimal mechanism. Note that because our closed-
form solution exists, strong duality holds, so the Lagrangian primal is not relaxed.

3.7 Interdimensional Settings

Many other natural problems fall into this category of “interdimensional” as well.
Consider a buyer with a value for an item and a private budget b which is the most
that he can pay [Devanur and Weinberg, 2017]. Or, suppose a buyer has a value v
for each unit of an item up to some private demand capacity d [Devanur et al., 2017].

We highlight now some of the features of the FedEx setting that are common also
to the single-minded setting in Chapter 4, as well as these other interdimensional
settings. These properties also help to explain why duality techniques gain traction.

• Every allocation rule (which lists, for each (value, deadline) pair, a probability
of receiving each of the three items) can be “collapsed” to simply list, for each
(value, deadline) pair, a single probability (of receiving a satisfying item).
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• Local Incentive Compatibility (IC) constraints imply global IC constraints.
That is, any auction satisfying all local IC constraints is also globally IC.

• A payment identity applies: a simple closed form determines payments as a
function of the allocation rule.

Of course, these three properties are intertwined: without a collapsible allocation
rule, no closed-form payment identity is possible.

There are other commonalities as well. In each of these settings, it has been
shown (in this chapter, the subsequent chapter, [DW ’17], and [DHP ’17]) that
the optimal mechanism is deterministic when the marginal distributions satisfy
declining marginal revenues (DMR). These works also show that the degree of
randomization (the menu complexity) of the optimal mechanism is larger than that
in single-dimensional settings, but smaller than in multi-dimensional settings, for
the FedEx, budgets, and the single-minded settings.
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4 Single-Minded Agents

4.1 Introduction

Consider the problem of selling multiple items to a unit-demand buyer. The funda-
mental problem underlying much of mechanism design asks how the seller should
maximize their revenue. If the items are identical, then the setting is considered
single-dimensional. In this case, seminal work of Myerson [1981] completely resolves
this question with an exact characterization of the optimal mechanism. The optimal
mechanism is a simple take-it-or-leave-it price, and the fact that there are multiple
items versus just one is irrelevant. In contrast, if the items are heterogenous, then the
setting is multi-dimensional and, unlike the single-dimensional setting, optimal mech-
anisms are no longer tractable in any sense: numerous recent works identify various
undesirable properties [Manelli and Vincent, 2007; Briest et al., 2015; Hart and Nisan,
2013; Hart and Reny, 2012; Daskalakis et al., 2013; Daskalakis, Deckelbaum, and
Tzamos, 2015].

Chapter 3 identifies an interesting middle-ground. Imagine that the items are
neither identical nor heterogeneous, but are instead varying qualities of the same
item. To have an example in mind, imagine that you’re shipping a package and
the items are one-day, two-day, or three-day shipping. You obtain some value v for
having your package shipped, but only if it arrives by your deadline (which is one,
two, or three days from now). Viewed in the context of a unit-demand buyer, this
means that the buyer will always have value v or 0 for every item, and the set of
items which yield non-zero value is either {1}, {1, 2}, or {1, 2, 3} (so we can think of
the input as being a two-dimensional distribution over (value, deadline) pairs).

The FedEx Problem is a special case of single-minded valuations: a buyer has a
valuation v for a specific subset of items S, and obtains value v if he gets any superset
of S, and 0 otherwise. To have an example in mind, imagine that a company offers
internet, phone service, and cable TV. You have a value, v, and are interested in
either exclusively internet service, internet/phone service, or internet/cable, and so
on. If you receive something at least as good as your interest, then you get value v,
otherwise you get a value of zero (so we again think of the input distribution as a

This chapter is based on ongoing joint work with Nikhil Devanur, Raghuvansh Saxena, Ariel
Schvartzman, and Matt Weinberg [DGSSW ’19].
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two-dimensional distribution over (value, interest) pairs).
An alternative perspective to single-minded valuations is that there is a partial

order on the set of possible interests a buyer may have. The partial order is just the
one induced by set inclusion. The FedEx problem has totally-ordered items: one-day
shipping is at least as good as two-day shipping is at least as good as three-day
shipping, and every buyer agrees. In fact, any partial order can be induced from
set inclusion, so the two settings are equivalent (see Observation 13 in Section 4.10).
It turns out that the partial order view is more useful from a mechanism design
perspective, therefore we will use that view for the rest of this chapter.

The following problem can also be interpreted as a partially-ordered setting:
Suppose that each buyer has a publicly visible attribute which the seller can use to
price discriminate. E.g., the buyer could be a student, a senior, or general-admission.
Or, the buyer could be a “prime member” or a “non-prime member.” However,
buyers with certain attributes can disguise themselves as having other attributes,
given by a partial order. For example, a prime member could disguise as a non-prime
member, but not vice-versa. Then if item i is a movie ticket redeemable by anyone
who can disguise themselves as having attribute i, the items are partially-ordered.

4.1.1 Main Results

Of particular relevance to this chapter is the notion of menu complexity: the number
of non-trivial options presented to the buyer. Through the lens of menu complexity,
Myerson’s seminal work shows that the optimal mechanism for single-dimensional
settings has menu complexity 1, while Manelli and Vincent [2007]; Daskalakis
et al. [2015] show that the optimal mechanism for the multi-dimensional setting
might have uncountable menu complexity—this holds even for just two items, and
even when the item values are drawn independently from absolutely bounded
distributions. This dichotomy serves as one fundamental difference between single-
dimensional and multi-dimensional settings.

The main results of this chapter are upper and lower bounds showing that for
the smallest non-trivial instance of just three partially-ordered items, the menu-
complexity of the revenue-optimal mechanism is unbounded but finite.1 This uncovers
a new region on the menu complexity spectrum, sharply contrasting with the

1This work started as an attempt to generalize the FedEx results to the single minded setting.
This chapter is an explanation for why we failed.
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single-dimensional setting (menu complexity 1), the totally-ordered setting (menu
complexity 7, for three items), and the heterogeneous items setting (uncountable).

An unbounded lower bound (Theorem 3) implies that as soon as the partial order
is non-trivial (i.e., not totally-ordered), optimal mechanisms get considerably richer.
In particular, our lower bound implies that optimal mechanisms for single-minded
valuations with at least three items have unbounded menu complexity. On the other
hand, we show that the menu complexity for the three item case is always finite
(Theorem 4). Together, this means that for all M , there exists a distribution over
(value, interest) pairs such that every optimal mechanism has menu complexity≥M ,
but for any distribution, there exists an optimal menu of finite menu complexity.

Note that while it is a subject of debate what the true notion of complexity or
simplicity should be for mechanisms, our lower bounds are in a setting where there
are exactly 3 deterministic outcomes. Thus the source of high menu complexity is
randomization, and therefore our results can also be thought of as capturing the level
of randomization required by the optimal mechanism. It should be of clear interest
that many different natural settings can span such a wide gap of randomization
needed in the optimal mechanism.

The main technical takeaway from our results is a thorough understanding of op-
timal mechanisms for single-minded bidders through broadly applicable tools. Our
theorem statements use the language of menu complexity, but only to distinguish
among mechanisms with bounded, unbounded, or infinite menu complexity. The
main conceptual takeaway is that optimal auctions for single-minded valuations lie
in a space of their own: significantly more complex than optimal single-dimensional
auctions, or even optimal auctions for totally-ordered valuations, yet significantly
more structured than optimal multi-dimensional auctions.

To contrast with the complexities that result when no assumptions are placed
on the prior distributions, we also consider the special case where each marginal
distribution (of values conditioned on interest) satisfies Declining Marginal Rev-
enues.2 Here, we provide an explicit description of the optimal mechanism, which
is deterministic (Theorem 12). That is, each item i (in the language of partial orders,
or bundle in the language of single-minded buyers) is offered at some price pi and

2A one-dimensional distribution F satisfies Declining Marginal Revenues (DMR) if v(1− F (v))
is concave. See Devanur et al. [2017] for examples and more discussion. For example, uniform distri-
butions are DMR, along with any distribution of bounded support and monotone non-decreasing
density.
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Known Menu Complexity Results for Optimal Mechanisms with One Buyer
One Item FedEx Single-Minded, 3 Items Multi-Unit Additive

Det. under DMR N/A X 3 X N/A
Lower Bound 1 2m − 1 unbounded unbounded uncountable
Upper Bound 1 2m − 1 finite — uncountable

Bold results are from this work.

the buyer picks whichever item maximizes vi − pi (so the menu complexity is at
most m for m items). The fact that optimal mechanisms are deterministic subject to
DMR matches prior work for totally-ordered settings [Che and Gale 2000; FGKK
’16; DW ’17; DHP ’17].

4.1.2 Additional results

We postpone all details about our proofs to the technical sections, but highlight
one result of independent interest that we develop en route. Our problem can be
phrased as a continuous linear program, and all of our proofs require reasoning
about the dual. In particular, developing our lower bound construction (instances
with unbounded menu complexity) consists of two parts: First, we construct a
candidate dual λ for which a primal exists satisfying complementary slackness, and
for which every primal satisfying complementary slackness has menu complexity
≥ M . Second, we prove that there exists a distribution for which λ is a feasible
dual (and combining these two claims means that every optimal mechanism for this
input has menu complexity ≥M ). Analyzing λ through complementary slackness
is technically interesting, and captures all of the insight one would hope to gain from
the construction. Reverse engineering an instance for which λ is feasible, however,
is technically challenging yet unilluminating. On this front, we prove a “Master
Theorem,” stating essentially that every candidate dual is feasible for some input
distribution (Theorem 14). This allows the user (of the theorem) to reason exclusively
about primals and duals, letting the Master Theorem map the candidate pair back to
an instance for which they are feasible. In some sense, the Master Theorem formally
separates the insightful analysis from the tedious parts.

Of course, one should not expect this theorem to hold in general multi-dimensional
settings (in particular, one key property that enables our Master Theorem is a “pay-
ment identity,” which general multi-dimensional settings notoriously lack—this is a
further example of how our setting lies in-between single- and multi-dimensional),
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but the Master Theorem is quite generally applicable for problems in this intermedi-
ate range. In addition, because the Master Theorem takes care of guaranteeing that
distributions corresponding to some dual will exist, this result also emphasizes the
strength of reasoning about duals in similar settings.

Finally, beyond our main results, we prove two additional results using the same
tools. First, we apply our lower bound techniques to show that the menu complexity
of the Multi-Unit Pricing problem [DHP ’17] is also unbounded (Theorem 18 in
Section 4.12). Multi-Unit Pricing is also a totally-ordered setting, where the items
correspond to copies of a good (item one is one copy, item two is two copies, item
three is three copies). The difference from FedEx is that if the buyer is interested in
two copies but gets one, they get half their value (versus zero).

4.1.3 Roadmap

We show that the menu complexity of optimal mechanisms for single-minded
bidders is unbounded (Theorem 3), but always finite (Theorem 4), even with just
m = 3 items. We further show that optimal mechanisms are deterministic whenever
all marginals satisfy DMR, and provide an explicit construction of the optimal
mechanism (Theorem 12). Our “Master Theorem” (Theorem 14) is of independent
interest for future work on mechanism design with totally- or partially-ordered
items. We also display the applicability of our techniques for the related settings of
Multi-Unit Pricing (Theorem 18).

Immediately below, we overview the most related works. In Section 4.3, we
provide the minimal preliminaries to get the main ideas behind our results (full
preliminaries appear in Section 4.6). In Section 4.4, we highlight the main features
of optimal mechanisms for single-minded bidders without yet getting into duality.
In Section 4.5 we overview the key duality aspects for our main results. Sections 4.7
and 4.8 prove our main result in the general case. Section 4.9 proves our stronger
characterization for the special case of DMR marginals.

4.2 Related Work

The most related line of works has already mostly been discussed. The FedEx Prob-
lem considers totally-ordered items (in our language), as does Multi-Unit Pricing
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and Budgets [Che and Gale, 2000; Fiat et al., 2016; Devanur et al., 2017; Devanur and
Weinberg, 2017]. The present chapter is the first to consider partially-ordered items.
In terms of techniques, we indeed draw on tools from prior work. All three prior
works employ some form of duality. Our approach is most similar to that of Devanur
and Weinberg [2017] in that (1) both are the only works to use the analysis from
[CDW ’16] to characterize optimal mechanisms rather than obtain approximations,
and (2) we also perform “dual operations” rather than search for a closed form.
However, as the single-minded setting is much more complicated, we extend the
techniques to handle this setting.

Also related is a long line of work which aims to characterize optimal mecha-
nisms beyond single-dimensional settings. Owing to the inherent complexity of
mechanism design for heterogeneous items, results on this front necessarily con-
sider restricted settings [Laffont et al., 1987; Giannakopoulos and Koutsoupias, 2014;
McAfee and McMillan, 1988; Daskalakis et al., 2013, 2015; Haghpanah and Hartline,
2015; Malakhov and Vohra, 2009]. From this set, the most related are Haghpanah
and Hartline [2015]; Malakhov and Vohra [2009], who also considered settings where
all consumers prefer (e.g.) item a to item b, but there are no substantial technical
connections.

There is also a quickly growing body of work regarding the menu complexity
of multi-item auctions. Much of this work focuses on settings with heterogeneous
buyers [Briest et al., 2015; Hart and Nisan, 2013; Babaioff, Gonczarowski, and Nisan,
2017; Wang and Tang, 2014; Daskalakis et al., 2015; Gonczarowski, 2018]. Very recent
work of [SSW ’18] considers the menu complexity of approximately optimal mecha-
nisms for the FedEx Problem (for which [FGKK ’16] already characterized the menu
complexity of exactly optimal mechanisms). On this front, our work places partially-
ordered items (where the menu complexity is finite but unbounded) distinctly
between totally-ordered items (where the menu complexity is bounded) [FGKK ’16],
and heterogeneous items (uncountable) [DDT ’15]. Previously, no settings with this
property were known.

4.3 Preliminaries

In the interest of presentation, we’ll provide the minimum preliminaries here for
the reader to understand the key ideas. In Section 4.6, we provide full preliminaries,
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including additional intuition, and covering prior work (such as [FGKK ’16; DW
’17]). Many of the facts we will use are stated here without proof (proofs are given
in Section 4.6).

4.3.1 A Minimal Instance

We focus on the three-item case with items G = {A,B,C} where A � C and B � C,
but A 6� B and B 6� A. That is, if a buyer is interested in item C, they are content
with A or B. If they are interested in A, they are content only with A (ditto for B).
There is a single buyer with a (value, interest) pair (v,G), who receives value v if they
are awarded an item� G (that is, G′ � G orG′ = G). This is the minimal non-trivial
example of a partially-ordered setting. A menu-complexity lower bound for this
example applies to any partially-ordered setting that contains an item G with at
least two incomparable items that dominate G (which includes every single-minded
valuation setting with at least 3 items). For any partially-ordered instance that does
not contain this structure, i.e., if for every item G, there is at most one other item
that immediately dominates G, then the FedEx closed-form solution applies3, so the
menu-complexity of the optimal mechanism is exponential/bounded [FGKK ’16;
SSW ’18].

An instance of the problem consists of a joint probability distribution over [0, H]×
G, where H is the maximum possible value of any bidder for any item.4 We will use
f to denote the density of this joint distribution, with fG(v) denoting the density at
(v,G). We will also use FG(v) to denote

∫ v
0
fG(w)dw, and qG to denote the probability

that the bidder’s interest is G.
We’ll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports

a (value, interest) pair and is awarded a (possibly randomized) item. Further, as
observed in Fiat et al. [2016], it is without loss of generality to only consider mecha-
nisms that award bidders their declared item of interest with probability in [0, 1], and
all other items with probability 0.5 For a direct mechanism, we’ll define aG(v) to be

3This is not an immediate corollary of their theorem statements, but readers familiar with Fiat
et al. [2016] will observe that this follows.

4Note that the multi-dimensional instances with uncountable menu complexity are also sup-
ported on a compact set: [0, H]2. So our results are not merely a product of compactness.

5To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t
dominate their interest. See also that they are just as happy to get their interest item instead of any
item that dominates it. It will also make this option no more attractive to any bidder considering



71

the probability that item G is awarded to a bidder who reports (v,G). Our goal is to
find the revenue-optimal allocation rule—aG(v) defined for allG ∈ G, v ∈ [0, H] with
payment determined by the allocation rule—such that the mechanism is incentive-
compatible. The menu complexity of a direct mechanism refers to the number of
distinct pairs (G, q) such that there exists a v with aG(v) = q.

4.3.2 Incentive Compatibility, Revenue Curves, and Ironing

As observed in [FGKK ’16], it is without loss of generality to only consider mecha-
nisms that award bidders their declared item of interest with probability in [0, 1],
and all other items with probability 0. Also observed in [FGKK ’16] is that Myer-
son’s payment identity holds in this setting as well, and any truthful mechanism
must satisfy pG(v) = vaG(v)−

∫ v
0
aG(w)dw (this also implies that the bidder’s utility

when truthfully reporting (v,G) is uG(v) =
∫ v

0
aG(w)dw). This allows us to drop the

payment variables, and follow Myerson’s analysis. Fiat et al. observe that many of
the truthfulness constraints are redundant, and in fact it suffices to only make sure
that when the bidder has (value, interest) pair (v,G) they:

• Prefer to tell the truth rather than report any other (v′, G). This is accomplished
by constraining aG(·) to be monotone non-decreasing (exactly as in the single-
item setting).

• Prefer to tell the truth rather than report any other (v,G′ ∈ N+(G)). By
N+(G), we mean all items G′ such that G′ � G, but there does not exist a
G′′ with G′ � G′′ � G. This is accomplished by constraining

∫ v
0
aG(w)dw ≥∫ v

0
aG′(w)dw (as the LHS denotes the utility of the buyer for reporting (v,G)

and the RHS denotes the utility of the buyer for reporting (v,G′)). Note that
this is equivalent to saying that the area under G’s allocation curve should be
at least as large at every v as the area under G′’s allocation curve.

All of these constraints together imply that (v,G) also does not prefer to report
any other (v′, G′).6 We conclude this section with some standard definitions and
misreporting. So starting from a truthful mechanism, modifying it to only award the item of declared
interest or nothing cannot possibly violate truthfulness. Note also that this modification maintains
optimality, but could impact the menu complexity up to a factor of # items. As we only consider
distinctions between bounded, unbounded, and infinite, this is still w.l.o.g.

6For example, if (v,G) prefers truthful reporting to reporting (v,G′) where G′ � G, and (v,G′)
prefers truthful reporting to reporting (v′, G′), then since (v,G) gets the same utility for reporting
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observations.

Definition 5 (Revenue Curve). The revenue curve for an item G with CDF FG is a
function RG that maps a value v to the revenue obtained by posting a price of v,
for a single item, when buyer values are drawn from the distribution FG. Formally,
RG(v) := v · [1 − FG(v)]. We say that a revenue curve is feasible if there exists a
distribution that induces it. The monopoly reserve price rG of the revenue curve is
rG ∈ argmaxpRG(p).

Definition 6 (Virtual Value). Myerson’s virtual valuation functionϕG(·) is defined so
that ϕG(v) := v− 1−FG(v)

fG(v)
. Observe that R′G(v) = 1−FG(v)− vfG(v) = −ϕG(v)fG(v).

When clear from context we will omit the subindex G.

Definition 7 (DMR). We say that a marginal distribution of values FG satisfies
declining marginal revenues (DMR) if RG(v) is concave, or equivalently, if ϕG(v)fG(v)

is monotone non-decreasing.

When the marginal distributions do not all satisfy the DMR assumption, we
instead need to iron the distribution, an analogue to Myersonian ironing.

Definition 8 (Ironing). The ironed revenue curve denoted R̂(·) for a revenue curve
R(·) is the least concave upper bound on the revenue curve R(·).7 A point v is ironed
if R̂(v) 6= R(v). We say that [a, b] is an ironed interval if R̂(a) = R(a), R̂(b) = R(b),
and R̂(v) 6= R(v) for all v ∈ (a, b), where if v ∈ (a, b), then a and b are the lower and
upper endpoint of the ironed interval, respectively.

An ironed revenue curve is depicted in Figure 4.1. By the definition of concavity,
if z is ironed, then R̂(z) = βR(a) + (1− β)R(b) where z ∈ (a, b), βa+ (1− β)b = z,
and a, b are unironed. Importantly, observe that setting price z to a consumer drawn
from FG yields revenue R(z) < R̂(z). Yet, if we set price a with probability β and b
with probability (1− β), we will get revenue βR(a) + (1− β)R(b) = R̂(z). Once can
(v,G′) as type (v,G′) does for truthfully reporting, (v,G) prefers truthful reporting to reporting
(v′, G′).

7We emphasize that this work irons the revenue curve with values on the x-axis. Classical one-
dimensional ironing (to yield Myersonian ironed virtual values) is done on the revenue curve with
quantiles on the x-axis.
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check that this is precisely the allocation and payment

a(v) =


0 v < a

β v ∈ [a, b)

1 v ≥ b

and p(v) =


0 v < a

βa v ∈ [a, b)

βa+ (1− β)b v ≥ b

.

Figure 4.1: For some implicit distribution F , the revenue curve R(v) = v · [1− F (v)]
is depicted, as is the ironed revenue curve, or the revenue curve’s least concave
upper bound.

4.4 Three Illustrative Examples

In this section, we use three example instances to understand how the optimal
mechanisms become increasingly complex, blowing up from deterministic prices
to unbounded randomization. We begin with some intuition before diving into
examples.

Intuition: Why is single-minded more complex? Consider first a one-item setting
that only sells 2-day shipping. Myerson’s seminal work proves that the optimal
way to sell 2-day shipping in isolation is to post the monopoly reserve price for it.
Consider next retroactively adding 1-day shipping into the mix, perhaps because
some customers demand 1-day shipping and aren’t satisfied with 2-day shipping.
Perhaps the distribution of customers demanding 1-day shipping has a higher
Myerson reserve than the initial 2-day shipping distribution, in which case it is
consistent to set both optimal reserves. Note, however, that a customer who wants
their package within 2 days would be content with 1-day shipping. So if instead the
1-day shipping distribution has a lower Myerson reserve than 2-day shipping, posting
the pair of Myerson reserves is no longer incentive compatible. This complexity
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arises in the FedEx problem Fiat et al. [2016], and requires considering the constraints
imposed on 2-day shipping by 1-day shipping (or vice versa).

Now consider the simplest single-minded valuation setting. The internet service
provider (ISP) sells three options: wifi, wifi/cable, and wifi/phone, where wifi/-
cable and wifi/phone dominate wifi but are incomparable with each other. If it
happens to be that the distribution of consumers who are interested in wifi/cable or
wifi/phone both have a higher Myerson reserve than the distribution of consumers
who are interested in only wifi,8 then again the seller can simply offer all three
options at their Myerson reserve. However, if this is not the case, further optimiza-
tion must be done. Importantly, in contrast to the FedEx setting, there’s a circular
dependency involving these three options which doesn’t arise in the totally-ordered
case (see examples for further detail). In this way, the IC constraints that govern the
mechanism are much more complex in the single-minded setting than in the FedEx
setting, and are the reason both for developing much richer techniques and for the
much higher degree of randomization that is seen in our results.

Now, we explain what the optimal mechanism looks like for (1) the minimal
partially-ordered (single-minded) instance under DMR, (2) the minimal totally-
ordered (FedEx) instance without DMR, and (3) the minimal partially-ordered
instance without DMR.

Three Partially-Ordered Items under DMR. We begin with the special case where
the marginal distributions for each item satisfy DMR. Recall that this implies that the
marginal revenue curves for each item are concave, and thus do not require ironing.
We show how to derive the optimal item pricing (but a proof that this is indeed
optimal is deferred to Section 4.9 as part of the general DMR case). Our instance is
again that where C is the worst item (e.g. wifi) and A and B are incomparable (e.g.
wifi/cable and wifi/phone).

Let’s start by considering what price we would set for item A if we had already
set price pC for item C. (Note that whatever price we set for item B has no effect, as
A and B are incomparable.) Observe that our revenue from setting any price pA is
just pA · [1−FA(pA)], so ideally we would just set price rA := arg maxp{p · [1−FA(p)]}.

8Recall the example from Chapter 3 in which a one-dimensional distribution D stochastically
dominates D′ yet has a lower reserve: D′ is uniform over the set {1, 10} and has reserve 10; D is
uniform over the set {9, 10}with reserve 9.
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If rA ≥ pC , this doesn’t violate any IC constraints. Indeed, consumers with interest
C will prefer to pay pC ≤ rA to get item C rather than item A. If rA < pC , however,
setting price rA will violate IC, as now consumers with interest C would strictly
prefer to report interest in item A instead. This constrains us to set a price for A
that is at least pC . Observe that, because RA(·) is concave, the revenue-maximizing
price to set that is at least pC (which is > rA) is pA := pC . Hence, we can define the
revenue curve R̄A(·) to describe the revenue we can get from selling item A as a
function of pC :

R̄A(pC) =

RA(rA) pC ≤ rA

RA(pC) pC > rA
.

The same definition holds for R̄B(·). Now, we can find the price to set for item
C that optimizes the impact on all three items by simply finding the p maximizing
RABC(p) := RC(p) + R̄A(p) + R̄B(p) (depicted in Figure 4.2). Picking pC as such,
and then setting pA := max{rA, pC}, pB := max{rB, pC} is the optimal pricing. The
(challenging) remaining step is to prove that in fact this is optimal even among
randomized mechanisms. The duality theory previously hinted at is key in this step,
but we postpone these details for now. Importantly, note that this claim requires the
DMR assumption (so proving it will certainly be technically involved)—without it,
there might be a better randomized mechanism.

Figure 4.2: The construction of RABC with RA, R̄A, RB, R̄B, and RC illustrated as
well.

Two Items without DMR (FedEx). In this example, there are only two items, A
and C with A � C. In this case, we’ll think about first setting the price for A, and
understanding how it constrains our choices for C. If we set price pA for item A,
then we are constrained to give every type (v, C) interested in item C utility at least
v− pA. Again, if rC ≤ pA, we should just set price rC on item C. However, if rC > pA,
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without the DMR assumption, it’s unclear what the best price to set should be. Indeed,
it could be that some price pC � pA generates more revenue than pA as RC(·) is not
necessarily concave. Note, however, that the ironed revenue curve R̂C(·) is concave.
So arg maxpC≤pA{R̂C(pC)} = min{rC , pA}. It’s unclear exactly what to make of this,
but one hope (that turns out to be correct), is that the optimal scheme for item C,
conditioned on pA, is to set expected price pC := min{rC , pA} via the allocation rule
defined as in Definition 8. It is not obvious that such an allocation rule satisfies
IC, but straight-forward calculations confirm that indeed it does. Similarly to the
previous example, we can now define:

R̄C(pA) =

R̂C(pA) pA < rC

RC(rC) pA ≥ rC
and RAC(pA) = RA(pA) + R̄C(pA).

This construction is depicted in Figure 4.3. Figure 4.4 gives some intuition as to
why it is indeed incentive compatible to set the proposed allocation rule for item
C (but the goal of this section is not to provide complete proofs). It is now clear
that, among all options which set a deterministic price for item A, and implement
an expected price on the ironed revenue curve for item C, the above procedure is
optimal. What is not clear is why this procedure is optimal over all possible menus
for item C, or even why a randomized menu for item A can’t perform better. Indeed,
the same duality theory referenced previously takes care of this.

This example perhaps also gives intuition for the menu complexity upper bound
of 2m − 1 for FedEx. Repeating this process for another totally-ordered item, each
option offered to buyers with interestC could be “split” into at most two new options
to be offered to buyers with interest D ≺ C.

Three Partially-Ordered Items without DMR. In our first example, we reasoned
about how our decision for item C constrains which prices to set for items A and B.
In our second example, we reasoned about how our decision for item A constrains
prices to set for item C. We presented the opposite direction (1) to present both
types of arguments and (2) because this direction is necessary without the DMR
assumption. For partially-ordered items, however, we really can only reason about
how decisions for item C constrain prices for A and B. The reason is that in order to
know how pA constrains our options for item C, we also need to know pB. Indeed,
only min{pA, pB} matters for constraining C. So we would need to know pB to
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Figure 4.3: A worse-to-better item
revenue curve for the FedEx set-
ting that determines the optimal
mechanism even without DMR.

Figure 4.4: Utility for items A and C are
equal for v ≤ p and v ≥ p, but for v ∈
(p, p), the randomized option provides
more utility.

know whether a proposed pA is imposing a new constraint or not. This results in
an impasse for this approach: this partial order requires us to reason about C’s
price first, but without DMR, we must reason about A and B first. However, this is
only intuition as to why this setting becomes more complicated. In Subsection 4.5.2,
we explain why it is that the IC constraints can cause the randomization to get so
unwieldy, and Subsection 4.5.4 cements this with an example.

Note, however, that we can still reason as we previously did about the optimal
item pricing. If, as in the first example, we define R̄A(pC) to be the revenue from
selling item A at the optimal price that exceeds pC , and R̄B(pC) similarly for item
B, then RABC(pC) := RC(pC) + R̄B(pC) + R̄A(pC) accurately defines the revenue we
get from all three items by setting price pC on item C, and setting the optimal prices
for A and B conditioned on this.

Take the following example marginal distributions and corresponding marginal
revenue curves, depicted in Figures 4.5 and 4.6, which do not satisfy DMR.

The optimal deterministic price to set is 8 on item C, which will result in prices
of 8 on items A and B as well. This gives RABC = 3.155. However, there is a better
mechanism this time, with a good deal of randomization. Working out the exact
numbers is quite messy, which further motivates the duality approach we take.
But the idea is that the interaction between the three items can get quite unwieldy:
improving the option offered for C relaxes constraints on A, which may increase
the utility received by purchasing item A. This can in turn loosen the constraints
on item B (because now item A is preferable to item B), which may in turn cause
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Figure 4.5: The probability densitives
for itemsA,B, andC, that do not satisfy
DMR.

Figure 4.6: The corresponding non-
DMR revenue curves.

higher-revenue options for item C to be viable, etc. Coming up with an explicit
solution to cope with this circular reasoning is fairly intractable, but fortunately it
is relatively tractable to describe potential optimal solutions through Lagrangian
duality and complementary slackness. The following randomized mechanism
achieves a revenue of 3.2, which is slightly more than that of the best deterministic
mechanism:

aA(v) =



0 v < 1.5

4
7

v ∈ [1.5, 6)

6
7

v ∈ [6, 10)

1 v ≥ 10

aB(v) =



0 v < 1

2
7

v ∈ [1, 3)

5
7

v ∈ [3, 8)

1 v ≥ 8

aC(v) =



0 v < 1

2
7

v ∈ [1, 2)

4
7

v ∈ [2, 5)

5
7

v ∈ [5, 7)

6
7

v ∈ [7, 9)

1 v ≥ 9

.

4.5 Key Concepts

In this section, we briefly overview of the key concepts of our work. Details are
provided in Sections 4.7 and 4.8.
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4.5.1 Bare Minimum Duality Preliminaries

4.5.1.1 Dual Terminology.

In this section, we introduce pictorial representations (Figures 4.7 and 4.8) of key
aspects of a dual solution and define terminology relevant to the dual.

Figure 4.7: A pictorial interpretation of virtual values fG(v)Φλ,α
G (v) and the dual

variable λG(v), in addition to the concepts of endpoints of the zero region, ironing,
an ironed interval, and the allocation in response.

The primal variables are aG(v) for all G ∈ G, v ∈ [0, H]. Recall that we use
uG(v) =

∫ v
0
aG(w)dw to refer to the utility of (v,G). The dual variables are λG(v),

αG,G′(v) for all G,G′ ∈ G, and v ∈ [0, H]. We first explain the role of these dual
variables, and then describe the Lagrangian relaxation obtained using these dual
variables.

Dual Variable λ. The λ dual variables correspond to incentive constraints between
types of the same interest but different value. This dual controls ironing, as explained
below. This really does correspond to ironing in the classical Myerson sense, only
in value space.

An oval (as depicted in Figure 4.7) represents an ironed interval, a region where
the dual variable λG(·) is non-zero.

• (Ironing) We say a type (v,G) is ironed, or that v is ironed in itemG, if λG(v) > 0.

• (Ironed Intervals) For any type (x,G), the ironed interval containing x in G
is defined by the bottom end point xG = sup{v ≤ x | λG(v) = 0} and the top
end point x̄G = inf{v ≥ x | λG(v) = 0}. Then for all v ∈ (xG, x̄G), type (v,G) is
ironed, v̄G = x̄G, and vG = xG.
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As we will see later, dual best response (condition (4.4)) requires that if λG(v) > 0

then a′G(v) = 0. In other words, the allocation rule aG must be constant over ironed
intervals. For any value x, an optimal allocation must satisfy that aG(x) = aG(xG).

Dual Variable α. The α dual variables correspond to incentive constraints between
types of the same value but different interest.

Figure 4.8: A pictorial representation of the dual variable α, in addition to the
concepts of flow, preferable items, and equally preferable items. Flow is assumed to
be coming from item C.

In Figure 4.8, a horizontal arrow into item A (or B) at v indicates that αC,A(v) (or
αC,B(v)) is non-zero. We write the following statements for G ∈ {A,B}.

• (Flow) We will call the value of αG′,G(v) the “flow into (v,G)” or the “flow into
G at v.” When we focus on the minimal partial-order example, we infer that
flow into A or B comes from C in our figure.

Dual best response (condition (4.5)) requires that for G ∈ {A,B}, if αC,G(v) > 0

then
∫ v

0
aG(x)dx =

∫ v
0
aC(x)dx, or equivalently, uG(v) = uC(v): a type with value v

should have the same utility in C and G. Sending flow across interests forces the
corresponding utilities to be the same.

Virtual Values. We will define a new variable, Φλ,α(v) for all v ∈ [0, H], and we
will call the product f(v)Φλ,α(v) the virtual value.9 Once again, this is a generalization
of Myerson’s virtual value function to this more general setting.

9Whether we refer to Φ as the virtual value or Φf reflects whether we iron in the quantile space
or the value space.
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Figure 4.7 has a vertical axis ranging over values from 0 (at the bottom) to H (at
the top), with a label of the item of focus G at the top. The point on the axis for any
v represents the virtual value fG(v)Φλ,α

G (v).
Of particular interest to us is the region where the virtual value is 0 because this

is the region (and the only region) for which a primal satisfying complementary
slackness can have a randomized allocation. This is an interval if (fGΦλ,α

G )(·) is
monotone in v (our solution ensures it is; details in Section 4.6.5).

• (Endpoints of Zero Region) We define the bottom end point of the zero virtual
value region in G by rG = inf{v | fG(v)Φλ,α

G (v) ≥ 0} and the top end point
r̄G = sup{v | fG(v)Φλ,α

G (v) ≤ 0}.

In Figure 4.7 the horizontal black lines and signs indicate where the virtual values
shift from positive sign to zero, rG, and from zero to negative sign, rG. Primal best
response requires the allocation to satisfy aG(v) = 0 for v ≤ rG (condition (4.2)) and
aG(v) = 1 for v ≥ rG (condition (4.3)).

4.5.1.2 The Lagrangian Dual.

The quality of a primal solution is measured by how well it solves the following
Lagrangian relaxation induced by (λ, α). The quality of a dual solution is measured
by the value of its induced Lagrangian relaxation. A dual is better if the value of its
induced Lagrangian relaxation is smaller.

Variables: aG(v) ∀G ∈ G, v ∈ [0, H]

Maximize
∑
G∈G

∫ H

0

fG(v) · aG(v) · Φλ,α
G (v)dv

subject to aG(v) ∈ [0, 1]

where ϕG(v) = v − 1− FG(v)

fG(v)
and where Φλ,α

G (v)

:= ϕG(v)+
1

fG(v)

−λ′G(v) +
∑

G′∈N+(G)

∫ H

v

αG,G′(w)dw −
∑

G′:G∈N+(G′)

∫ H

v

αG′,G(w)dw

 .
(4.1)
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Before continuing, let’s parse the Lagrangian relaxation. The only remaining
constraints are that aG(v) ∈ [0, 1], and the objective is a linear function of these
variables. This immediately implies that the solution to this LP relaxation will set
aG(v) = 1 whenever Φλ,α

G (v) > 0, and aG(v) = 0 whenever Φλ,α
G (v) < 0. This implies

that if there is any randomization, i.e., aG(v) ∈ (0, 1) then it must be that Φλ,α
G (v) = 0.

The details of the definition of Φ are not so important here. (However, note that in
the definition of Φ, the term λ′ refers to the derivative of λ.)

4.5.1.3 Complementary Slackness.

Under strong duality, a (primal, dual) pair is optimal if and only if the primal and
dual satisfy complementary slackness. In addition, if a dual (λ, α) is optimal, i.e.
satisfies complementary slackness with some primal, then any primal is optimal if
and only if it satisfies complementary slackness with (λ, α). Let’s review comple-
mentary slackness in our setting. A primal a and dual (λ, α) satisfy complementary
slackness if and only if:10

(Primal best response) Φλ,α
G (v) > 0 ⇒ aG(v) = 1 (4.2)

Φλ,α
G (v) < 0 ⇒ aG(v) = 0 (4.3)

(Dual best response) λG(v) > 0 ⇒ a′G(v) = 0 (4.4)

αG,G′(v) > 0 ⇒
∫ v

0

aG(x)dx−
∫ v

0

aG′(x)dx = 0

(4.5)

That is, a primal is a best response to a dual if all (v,G) with positive virtual
value are awarded the item, and all (v,G) with negative virtual value are not. A
dual is a best response to a primal if whenever a dual variable is non-zero, the
corresponding local IC constraint is tight. The entire technical aspect of this chapter
is using the constraints imposed by complementary slackness in (4.2-4.5) to reason
about optimal mechanisms and their menu complexity.

10One can interpret these conditions as saying that the primal is an optimal solution to the
Lagrangian relaxation, and the dual is the worst possible Lagrangian relaxation for the primal.
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4.5.2 Menu Complexity is Unbounded: A Gadget and Candidate
Instance

In this section, we provide a gadget that will be used in our menu complexity lower
bound, and successively chain copies of it together to build our full construction.
For one instance of our gadget, we provide a concrete potential dual, and prove
that any allocation rule satisfying complementary slackness with it must have two
distinct allocation probabilities. In order for this example to establish a lower bound
of two, we must additionally:

• Establish that there exists a distribution D for which our dual is feasible.
This is not covered in this section, and is deferred to our Master Theorem
(Theorem 14).

• Establish that there exists an allocation rule which satisfies complementary
slackness with this dual, thereby establishing that the dual is optimal (and any
optimal allocation rule must satisfy complementary slackness with it). This is
also not covered in this section, and is deferred to Section 4.8.

We begin below with our gadget, then successively chain copies together to
establish a menu complexity lower bound of M for any M > 0. We recall the
following facts established in the previous section:

1. A + in any graphics at (x,G) represents a strictly positive Virtual Value, which
implies that aA(x) = 1 in any allocation rule satisfying CS. A− in any graphics
at (x,G) represents a strictly negative Virtual Value, which implies that aG(x) =

0. (CS4.2-4.3)

2. A← in any graphics into A at x represents flow in. When there is flow into
both A and B at the same point x, this implies that uA(x) = uB(x). (CS4.5)

3. A point x in the middle of an oval in any graphics represents that x is contained
in the interior of an ironed interval, and implies that a(x) = a(y) where y is
the bottom of the oval. (CS4.4)

4.5.2.1 Step One: the base gadget and a lower bound of M = 2.

Our base case example is depicted in Figure 4.9. We note each feature, and how it
ties our hands with respect to the allocation rule via complementary slackness.
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Figure 4.9: Left: Our first example that requires randomizing on A, containing an
ironed interval [rA, rA] (so aA(x1) = aA(rA)) and flow into both A and B at x1 (so
uA(x1) = uB(x1)). Right: Primal best response dictates a price of x for item B, while
A’s allocation is 0 until rA and 1 after rA. Equal preferability at x1 forces uA(x1) (the
red area) equals uB(x1) (the blue area); the ironed interval [rA, rA] requires aA(·) to
be constant in this region, hence we must have aA(rA) ∈ (0, 1).

• In item B, there is a single point x < rA for which fB(x)Φλ,α
B (x) = 0. That is,

rB = rB = x. Then condition (4.2) implies that aB(v) = 1 for v > x.

• There is flow into both itemsA andB at x1 > x. That is, αC,A(x1), αC,B(x1) > 0.
Condition (4.5) implies that A and B must be equally preferable at x1, that
is,
∫ x1

0
aA(w)dw =

∫ x1
0
aB(w)dw. Note that aB(w) > 0 for w ∈ (x, x1], hence∫ x1

0
aB(w)dw > 0. Then to have

∫ x1
0
aA(w)dw > 0, because aA(·) is monotone,

it must be the case that aA(x1) > 0.

• The point x1 has fA(x1)Φλ,α
A (x1) = 0 and is in an ironed interval [rA, rA] where

rA < x, that is, this ironed interval is the entire region of values that have
virtual value zero in item A and it contains both x1 and x. Because x1 is in an
ironed interval in A, then the allocation is constant, so aA(rA) = aA(x1), which
we have already established must be positive.

• For whatever value that aA(rA) takes on, because rA < x, to satisfy equal
preferability at x1 (again, that

∫ x1
0
aA(w)dw =

∫ x1
0
aB(w)dw), we must have

aB(x) > aA(rA)(> 0), resulting in at least two distinct non-zero probabilities
of allocation.

To complete the example, (1) there is no other flow: for all v 6= x1, αC,A(v) =

αC,B(v) = 0, and (2) item C is unironed everywhere: λC(v) = 0 for all v. This base
gadget forces randomization for the allocation of item A because the utility of x1
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must be equal at A and B, but the allocation of item B must be zero below x, while
the allocation of item A must be non-zero.

4.5.2.2 Step Two: two chains and a lower bound of M = 3.

Our second example (see Figure 4.10) contains the relevant features from the first
example, but extends it to add an additional constraint: we replace the condition
rB = rB = x with an ironed interval [rB, rB] where rB < rA < rB < rA. We claim
that this example requires us to randomize on both items. Intuitively, this is because
we now have two constraints on utilities that must be satisfied, so two degrees of
freedom seems necessary.

• There is flow into both items A and B at x1 ∈ (rB, rA): αC,A(x1), αC,B(x1) >

0. Condition (4.2) implies that aB(v) = 1 for v > rB, so to satisfy equal
preferability, we must have aA(x1) > 0.

• The point x1 has fA(x1)Φλ,α
A (x1) = 0 and is in an ironed interval [rA, rA] where

rA < rB . As x1 is in an ironed interval in A, then the allocation is constant, so
aA(rA) = aA(x1) > 0.

• There is flow into both items A and B at x2 ∈ (rA, rB): αC,A(x2), αC,B(x2) > 0.
Since aA(x2) > 0—it lies in the ironed interval in A, so aA(x2) = aA(rA)—then
to satisfy equal preferability at x2, we must have aB(x2) > 0.

• The point x2 has fB(x2)Φλ,α
B (x2) = 0 and is in an ironed interval [rB, rB] where

rB < rA. As x2 is in an ironed interval in B, then the allocation is constant, so
aB(rB) = aB(x2) > 0.

• For whatever value that aB(rB) takes on, because rB < rA, then to satisfy
equal preferability at x2 (that

∫ x2
0
aA(w)dw =

∫ x2
0
aB(w)dw), we must have

aA(rA) > aA(rB)(> 0).

• For whatever value that aA(rA) takes on, because rA < rB, then to satisfy
equal preferability at x1 (

∫ x1
0
aA(w)dw =

∫ x1
0
aB(w)dw), we must have aB(rB) >

aA(rA)(> aA(rB) > 0), resulting in at least three distinct non-zero probabilities
of allocation.

Again, (1) there is no other flow: for all v 6= x1, x2, αC,A(v) = αC,B(v) = 0, and (2)
item C is unironed everywhere: λC(v) = 0 for all v.
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Figure 4.10: Left: Our second example, which requires randomization on both A
and B.
Right: If aA(rA) ≤ aB(rB), then uA(x2) < uB(x2) (the blue region is smaller than the
red), which violates complementary slackness.

Observe that in both examples, we reason from where we have one item with
positive virtual value and the other with virtual value zero downward that, in order
to satisfy a number of equal preferability constraints, because ironed intervals force
the allocation to be constant, then at every point, the allocation must be non-zero.
Then, we reason upward that, because the ironed intervals are interleaving between
the items and never aligned, the allocation must strictly increase at each point of
interest in order to satisfy equal preferability. This is precisely the reasoning we will
use to construct and prove an arbitrarily large instance and menu.

4.5.2.3 Step Three: four chains and a lower bound of M = 5.

In this section, we take one more step towards our general construction. The first
example presents our base gadget, and the second example chains two copies
together. In this section, we simply confirm how the gadgets interact as we chain
more and more together, bouncing back and forth from A to B.

Nonzero allocation probabilities. First, we see that the allocation at every ironed
value v such that Φλ,α

G (v) = 0 must be nonzero: aG(v) > 0. The argument holds for
each of (x1, A), (x2, B), (x3, A), and (x4, B). Below we iterate the same argument
made in the two previous sections, skipping some details.

• Suppose aB(x1) > 0 (this is necessarily true by Fact 1), and thus uB(x1) > 0.

• By Fact 2, uA(x1) = uB(x1) > 0. Then aA(x1) > 0.
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Figure 4.11: Left: An optimal dual for our example distributions, which will require
at least 4 distinct allocation probabilities.
Right: If aA(rA) ≤ aB(rB), then uA(x2) < uB(x2) (the blue region is smaller than the
red), which violates complementary slackness via Fact 2 at x4.

• By Fact 3, aA(sA) = aA(x1) > 0. This also implies that uA(x2) > 0.

• Now, again by Fact 2, uB(x2) = uA(x2) > 0, so aB(x2) > 0.

• Now, again by Fact 3, aB(x3) = aB(x2) > 0, so uB(x3) > 0.

• Again by Fact 2, uA(x3) = uB(x3) > 0, so aA(x3) > 0.

• By Fact 3, aA(x4) = aA(x3) > 0, so uA(x4) > 0.

• Finally by Fact 2, uB(x4) = uA(x4) > 0.

Essentially, if any of these allocations must be positive, it forces the rest of them,
working downwards, to be positive. And, by Fact 1, aB(x1) = 1, so uB(x1) > 0. Hence
the rest of the implications follow, so the allocation must be nonzero throughout
this region.

Distinct allocation probabilities. Now, given that the allocation must be nonzero
at every point in this range, we argue that it must be distinct at all of the points of
interest. Fix some nonzero aB(rB), and note by Fact 3 that aB(v) = aB(rB) for all
v ∈ [rB, sB]. By Fact 1, aG(v) = 0 for v < rG. Because rB < rA, then to have uA(x4) =

uB(x4), since uA(x4) =
∫ x4
rA
aA(w)dw = (x4− rA)aA(rA) and uB(x4) =

∫ x4
rB
aB(w)dw =

(x4 − rB)aB(rB), then we must have a distinct aA(rA) > aB(rB). This is depicted on
the right side in Figure 4.11. Then, by Fact 3, aA(x3) = aA(rA) > aB(rB).

The argument extends inductively for (x3, B), (x2, A), and (x1, B): we show it
with (x3, B). Note that uA(x4) = uB(x4) and suppose the inductive hypothesis of
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Figure 4.12: Our candidate dual instance: a top chain that spans the entire region of
zero virtual values for both A and B with no gaps between the ironed intervals that
comprise the chain. There is flow into A and B at every point xi in the chain.

aA(x4) > aB(x4), where aA(x3) = aA(x4) and aB(x4) = aB(rB) by Fact 3. Hence
uA(sB) > uB(sB). Then in order to have uA(x3) = uB(x3), we must have aB(x3) >

aA(x3).
The result is four distinct allocation probabilities in these four regions, and five

in total (including the deterministic option to get the item w.p. one). Essentially, this
example only has two ironed intervals in A and B each with four points of interest.
Our full construction below lets the number of ironed intervals grow with M .

4.5.2.4 Final Step: M chains and a lower bound of M .

It is possible to extend the examples above by continuing to interleave ironed inter-
vals with flow coming in. The combination of the equal preferability constraints and
the inability to increase the allocation in the middle of an ironed interval is what
requires us to randomize differently within each interval, forcing any number of
menu options. Details are given in Section 4.7, where we formally define this “top
chain” structure (Definition 9) and construct the candidate dual instance, which is
depicted in Figure 4.12. For example, our first example has a top chain of length one,
the second of length two, and the third of length four. Theorem 4 proves that there
exists a primal instance that satisfies complementary slackness with the defined
dual. This proves both that our dual is optimal, and thus any optimal primal must
satisfy complementary slackness with it, giving us Theorem 3.
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Theorem 3. Mechanisms that satisfy complementary slackness with a dual containing a
top chain of length M have menu complexity at least M . Moreover, for all M , there exists a
distribution D over three partially-ordered items for which a dual with top chain of length
M is feasible.

The “Moreover, . . . ” part of the theorem is due to our Master Theorem (Theo-
rem 14). The formal statement is a bit technical, and can be found in Section 4.11.

4.5.3 Menu Complexity is Finite: Brief Highlight

In Section 4.8, we discuss our approach for characterizing the optimal mechanism
for our 3-item minimal instance. We prove essentially that the interleaving of ironed
intervals used in the construction of the previous section is the worst case (in terms
of menu complexity). We do this by specifying a subclass of optimal duals (that we
call best duals) using two new dual operations, double swaps and upper swaps. We
then leverage the structure of the best duals to give an algorithm that recovers the
optimal primal from any best dual, and prove that the resulting mechanism has
finite menu complexity.

Theorem 4. For any best dual solution, the primal recovery algorithm returns a primal with
finite menu complexity that satisfies complementary slackness (and is therefore optimal).

We conclude with one vignette regarding how the menu complexity can be
unbounded but not infinite. Two crucial aspects of the “top chain” structure from
our examples (generalized in Figure 4.12) are that: (1) the ironed intervals for A
and B are interleaving—this is what “keeps the chain going” and (2) the sequences
for A and B terminate at different bottom endpoints. The latter is a bit subtle, but
the idea is that if the two chains terminate at the same bottom endpoint v, then
this entire process can be aborted and simply setting v as the reserve for all items
satisfies complementary slackness. So while in principle, this top chain structure
could indeed be countably infinite, it cannot also satisfy (1) and (2). This is because
the monotone convergence theorem states that both chains do indeed converge to
some bottom endpoint, and interleaving then guarantees that this bottom endpoint
must be the same.
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4.5.4 One Last Example

In this section, we construct an example by applying the Master Theorem (Theo-
rem 14) to the dual in Figure 4.11. The customer prior distribution in the example
consists of the marginal distributions depicted in Figures 4.5 and 4.6. The distri-
butions for A and B do not satisfy DMR, and, using the ideas from the previous
subsections, we will see that the optimal mechanism is randomized.

We can use the revenue curve procedure from Section 4.4 to determine the
optimal pricing for this example. It produces the curves in Figure 4.6, telling us
that the optimal price to set on item C is 8, which will result in prices of 9 on item
A and 8 on item B. This gives RABC(8) = 3.155. However, as we have seen in
Subsection 4.5.2, for the dual in Figure 4.11 (which corresponds to this distribution)
to satisfy complementary slackness with a mechanism, the mechanism must have a
good deal of randomization.

In Subsection 4.5.2, we reasoned that the allocation probability must be distinct at
each of the points (x1, A), (x2, B), (x3, A), and (x4, B). We also saw that if we fixed the
allocation at (x4, B), there was only one way to satisfy the rest of the complementary
slackness constraints, forming a system of equations. The primal recovery algorithm
described in the proof of Theorem 4 goes through solving this system of equations,
ensuring that any other additional complementary slackness constraints are met,
and that no pathological structures that might prevent a solution from existing
can arise. Applying this algorithm to our example results in the following optimal
randomized mechanism:

aA(v) =



0 v < 1.5

4
7

v ∈ [1.5, 6)

6
7

v ∈ [6, 10)

1 v ≥ 10

aB(v) =



0 v < 1

2
7

v ∈ [1, 3)

5
7

v ∈ [3, 8)

1 v ≥ 8

aC(v) =



0 v < 1

2
7

v ∈ [1, 2)

4
7

v ∈ [2, 5)

5
7

v ∈ [5, 7)

6
7

v ∈ [7, 9)

1 v ≥ 9

.

The mechanism achieves a revenue of 3.2, which is slightly more than that of the
best deterministic mechanism.



91

4.6 Full Preliminaries

While this chapter focuses on the three-item case, it’s illustrative (and perhaps
cleaner) to provide notation for general partially-ordered items. In general, there are
m partially-ordered items. Item G can be better than, worse than, or incomparable
to item G′, and we’ll use the relation G � G′ to denote that G is better than G′. We
refer to the set of items as G, and use N+(G) to denote the set of items G′ ∈ G for
which G′ � G, but there is no G′′ with G′ � G′′ � G (i.e. the items “immediately
better” than G, or the 1-out-neighborhood of G in a graphic representation). There
is a single buyer with a (value, interest) pair (v,G), who receives value v if they are
awarded an item � G. An instance of the problem consists of a joint probability
distribution over [0, H]× G, where H is the maximum possible value of any bidder
for any item. We will use f to denote the density of this joint distribution, with fG(v)

denoting the density at (v,G). We will also use FG(v) to denote
∫ v

0
fG(w)dw, and qG

to denote the probability that the bidder’s interest isG. Note thatFG(H) = qG < 1, so
FG(·) is not the CDF of a distribution (although FG(·)/qG is the CDF of the marginal
distribution of v conditioned on interest G).

We’ll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports
a (value, interest) pair and is awarded a (possibly randomized) item. For a direct
mechanism, we’ll define aG(v) to be the probability that item G is awarded to a
bidder who reports (v,G), and pG(v) to be the expected payment charged. Then a
buyer’s utility for reporting any (v′, G′) where G′ doesn’t dominate G is −pG′(v′),
and the utility for reporting any (v′, G′) where G′ dominates G is v · aG′(v′)− pG′(v′).

At this point, one can write a primal LP that maximizes expected revenue subject
to incentive constraints, manipulate the LP, and consider a Lagrangian relaxation
(and all of this is done in Fiat et al. [2016]; Devanur and Weinberg [2017]).

4.6.1 Formulating the Optimization Problem

The “default” way to write the continuous LP characterizing the optimal mecha-
nism would be to maximize

∑
G∈G

∫ H
0
fG(v)pG(v)dv (the expected revenue) such

that everyone prefers to tell the truth than to report any other type. As observed
in Fiat et al. [2016], it is without loss of generality to only consider mechanisms
that award bidders their declared item of interest with probability in [0, 1], and all
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other items with probability 0.11 Also observed in Fiat et al. [2016] is that Myer-
son’s payment identity holds in this setting as well, and any truthful mechanism
must satisfy pG(v) = vaG(v)−

∫ v
0
aG(w)dw (this also implies that the bidder’s utility

when truthfully reporting (v,G) is uG(v) =
∫ v

0
aG(w)dw). This allows us to drop the

payment variables, and follow Myerson’s analysis to recover:12

E[revenue] =
∑
G∈G

∫ H

0

fG(v) · pG(v)dv =
∑
G∈G

∫ H

0

fG(v)aG(v)

(
v − 1− FG(v)

fG(v)

)
dv

The experienced reader will notice that v − 1−FG(v)
fG(v)

is exactly Myerson’s virtual
value for the conditional distribution FG(·)/qG, which we’ll denote by ϕG(v). At this
point, we still have a continuous LP with only allocation variables, but still lots of
truthfulness constraints. Fiat et al. [2016] observe that many of these constraints are
redundant, and in fact it suffices to only make sure that when the bidder has (value,
interest) pair (v,G) they:

• Prefer to tell the truth rather than report any other (v′, G). This is accomplished
by constraining aG(·) to be monotone non-decreasing (exactly as in the single-
item setting).

• Prefer to tell the truth rather than report any other (v,G′ ∈ N+(G)). This is
accomplished by constraining

∫ v
0
aG(w)dw ≥

∫ v
0
aG′(w)dw (as the LHS denotes

the utility of the buyer for reporting (v,G) and the RHS denote the utility of
the buyer for reporting (v,G′)).

All of these constraints together imply that (v,G) also does not prefer to report any
other (v′, G′).13 Below, we will now formulate the Primal LP and its Lagrangian

11To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t
dominate their interest. See also that they are just as happy to get their interest item instead of any
item that dominates it. It will also make this option no more attractive to any bidder considering
misreporting. So starting from a truthful mechanism, modifying it to only award the item of declared
interest or nothing cannot possibly violate truthfulness.

12For the familiar reader, this derivation is routine, so we omit it. The unfamiliar reader can refer
to [Myerson, 1981; Hartline, 2013] for this derivation.

13For example, if (v,G) prefers truthful reporting to reporting (v,G′) where G′ � G, and (v,G′)
prefers truthful reporting to reporting (v′, G′), then since (v,G) gets the same utility for reporting
(v,G′) as type (v,G′) does for truthfully reporting, (v,G) prefers truthful reporting to reporting
(v′, G′).
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relaxation. This derivation is not a new result, but important to understanding our
approach. So we’ll go through some of the steps to help provide some intuition for
the reader, but omit any calculations and proofs.

4.6.2 The Primal

With the above discussion in mind, we can now formulate our primal continuous
LP.

Variables: aG(v), ∀G ∈ G, v ∈ [0, H]

Maximize
∑
G∈G

∫ H

0

fG(v)aG(v)ϕG(v)dv

subject to a′G(v) ≥ 0 ∀G ∈ G ∀v ∈ [0, H] (dual variables λG(v) ≥ 0)∫ v

0

aG(x)dx−
∫ v

0

aG′(x)dx ≥ 0 ∀G ∈ G, G′ ∈ N+(G) ∀v ∈ [0, H] (dual vars αG,G′(v) ≥ 0)

aG(v) ∈ [0, 1] ∀G ∈ G, ∀v ∈ [0, H] (no dual variables)

The first constraint requires that aG(·) is monotone non-decreasing for allG. If an
allocation rule is not monotone, it cannot possibly be part of a truthful mechanism.
As discussed above, Myerson’s payment identity combined with monotonicity
guarantees that (v,G) will always prefer to report (v,G) instead of (v′, G). The
second constraint directly requires that the utility of (v,G) for reporting (v,G) is
at least as high as for reporting (v,G′) (also discussed above). The final constraint
simply ensures that the allocation probabilities lie in [0, 1].

4.6.3 Derivation of the Partial Lagrangian Dual

Moving the first two types of constraints from the primal to the objective function
with multipliers λG(v) and αG,G′(v) respectively gives the partial Lagrangian primal:

max
a:aG(v)∈[0,1] ∀G∈G,∀v∈[0,H]

min
λ,α≥0

L(a;λ, α)
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where

L(a;λ, α) :=

∑
G∈G

∫ H

0

fG(v)aG(v)ϕG(v) +
∑

G′∈N+(G)

αG,G′(v) ·
[∫ v

0

aG(x)dx−
∫ v

0

aG′(x)dx

]
+ λG(v)a′G(v)

 dv.
This gives the corresponding partial Lagrangian dual of

min
λ,α≥0

max
a:aG(v)∈[0,1] ∀G∈G,∀v∈[0,H]

L(a;λ, α).

Note however that we can rewrite L(a;λ, α) by using integration by parts on the
a′G(v) term to get aG(v) terms, using that aG(0) = 0 and λG(H) = 0 without loss:∫ H

0

λG(v)a′G(v)dv = λG(v)aG(v) |H0 −
∫ H

0

λ′G(v)aG(v)dv = −
∫ H

0

λ′G(v)aG(v)dv

As in [FGKK ’16], this uses the facts that λG(·) is continuous and equal to 0 at any
point that a′G(v) =∞, which occurs at only countably many points. Then, collecting
the aG(v) terms gives:

L(a;λ, α) =
∑
G∈G

∫ H

0

[
fG(v)aG(v)ϕG(v)

+
∑

G′∈N+(G)

αG,G′(v) ·
[∫ v

0

aG(x)dx−
∫ v

0

aG′(x)dx

]
− λ′G(v)aG(v)

]
dv

=
∑
G∈G

∫ H

0

fG(v)aG(v)Φλ,α
G (v)dv

where we define

Φλ,α
G (v) := ϕG(v)+

1

fG(v)
·

 ∑
G′∈N+(G)

∫ H

v

αG,G′(x)dx−
∑

G′:G∈N+(G′)

∫ H

v

αG′,G(v)dx

− 1

fG(v)
λ′G(v).

Then we can write that the Lagrangian dual problem is

min
λ,α≥0

max
a:aG(v)∈[0,1]∀G∈G,∀v∈[0,H]

∑
G∈G

∫ H

0

fG(v)aG(v)Φλ,α
G (v)dv.
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4.6.4 More Dual Terminology

Minimal dual terminology is first introduced in Section 4.5.1. Here, we add a few
additional terms.

Dual best response (condition (4.5)) implies the following.

• (Preferable Items) To satisfy complementary slackness, for any x such that
αG,G′(x) > 0, we must have uG′(x) ≥ uG′′(x) ∀G′′ ∈ N+(G). This is because (a)
uG(x) = uG′(x) by complementary slackness and (b) uG(x) ≥ uG′′(x) ∀G′′ ∈
N+(G) by incentive compatibility.

• (Equally Preferable Items) By the above, to satisfy complementary slackness
with any dual with αG,G′(x) > 0 and αG,G′′(x) > 0, we must have uG′(x) =

uG′′(x).

4.6.5 Review of Dual Properties

• (Rerouting Flow Among N+(G)) If G′, G′′ ∈ N+(G) and we decrease αG,G′(v)

by ε and increase αG,G′′(v) by ε, then v′ ≤ v, fG′(v′)Φλ,α
G′ (v′) decreases by ε and

fG′′(v
′)Φλ,α

G′′ (v
′) increases by ε. All other virtual values, including all of those

within G, remain the same.

• (Utility based on the dual) We can often simplify how utility is written in terms
of the dual and complementary slackness constraints. If xG < x < y < xG,
then allocation in ironed intervals implies uG(y) = uG(x) + aG(y)(y − x).

• (Allocation to Nonzero Virtual Values) As shown above in Subection 4.5.1.2,
the dual variables (1) determine the virtual welfare functions Φλ,α(·) and (2)
are chosen to minimize the maximum virtual welfare under Φλ,α(·). For an op-
timal dual solution, the optimal mechanism will simply be the corresponding
virtual welfare maximizer that satisfies complementary slackness. Parts of this
mechanism are easy to predict if the virtual value functions are sign-monotone,
which we will later ensure that they are. Assuming this, we can talk about the
virtual values in terms of three regions: positives, negatives, and zeroes.

• (Ironing and Proper Monotonicity.) We say that a dual satisfies proper mono-
tonicity if fG · Φλ,α

G (·) is monotone non-decreasing (note the multiplier of fG).
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As shown in [FGKK ’16; DW ’17], for all α, there exists a λ such that (λ, α) is
properly monotone.

• (Boosting can only improve the dual.) Given any dual with properly monotone
virtual values, if there exists v such that fG(v)Φλ,α

G (v) < 0, then for any G′ ∈
N+(G), incrementing αG,G′(v) by fG(v)Φλ,α

G (v) only improves the dual. By
proper monotonicity, for all v′ ≤ v, fG(v′)Φλ,α

G (v′) < fG(v)Φλ,α
G (v) < 0, hence

increasing αG,G′(v) will not create any positives within G, not hurting the dual
objective. Sending flow into an item G′ can only help by making positives less
so, and does not increase any virtual values (but it’s possible that it doesn’t
strictly help). This operation is coined boosting in [DW ’17]. While it is clear
that G should send the flow, the remaining question is which G′ ∈ N+(G)

should the flow be sent to. This is the bulk of our analysis.

• By sign monotonicity, v > r̄G has a positive virtual value, and thus the alloca-
tion rule must set aG(v) = 1, otherwise it is not maximizing virtual welfare.

• Similarly, for values with negative virtual values, that is, v < rG, it must be
that aG(v) = 0.

From these observations, we can conclude that the flow out of C is identical to
the flow out of the root node (day n) in the FedEx solution. That is,

αC,A(v) + αC,B(v) =

0 v > r̄C

−R̂′′C(v)/fC(v) v ≤ r̄C .

where RC(·) is defined as in Definition 5, R̂C(·) is the least concave upper bound on
RC(·), and R̂′′C(·) is the second derivative of this function with respect to v.

We conclude with a fundamental result from [FGKK ’16].

Theorem 5 (Proper Ironing [FGKK ’16]). Given all dual variables α, suppose λG(v) = 0

for all (v,G). Then fG(v)Φλ,α
G (v) is defined for all (v,G). We define ΓG(v) = −

∫ v
0
fG(x)Φλ,α

G (x)dx,
and Γ̂G(·) is the least concave upper bound on this function. Then setting λG(v) =

Γ̂G(v)− ΓG(v) defines a continuous and differentiable λG(·) that, with the update of Φλ,α
G (·)

based on λG(·), results in the proper monotonicity of fG(·)Φλ,α
G (·).
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4.7 Formal Construction of a Candidate Dual Instance

We extend the above examples from SubSubsection 4.5.2 to require any number
of menu options. As in the two examples, we can reason from the top downward
that the allocation at the bottom of every ironed interval must be positive, and
reason from the bottom upward that the allocation must strictly increase for each
new overlapping ironed interval we encounter, yielding all different menu options.
We formally define this interleaving structure and call it a “chain,” depicted in
Figure 4.13. As another sanity check: each new point in the chain induces a new
equality that has to be satisfied. So if the chain is of lengthM , intuition suggests that
we should need M degrees of freedom to possibly satisfy complementary slackness
(but this is just intuition).

Figure 4.13: This is an example of a chain that consists of the points {(x,A), (y,B)}.
It is a top chain as x > r̄B. Note that (y,B) is preceded by (x,A) as there is flow
into B at y and y > xA, and there is no flow into B for any v ∈ (y, ȳB]. The chain
terminates at (y,B) since there is no flow into A for any v ∈ [y

B
, y

BA
].

Definition 9 (Top chain). A sequence (x1, A), (x2, B), (x3, A), · · · of points that switch
between items A and B is called a chain if the following hold:

• Φλ,α
A (x) = 0 for all (x,A) in the chain and Φλ,α

B (y) = 0 for all (y,B) in the chain.

• αC,A(x) > 0 for all (x,A) in the chain and αC,B(y) > 0 for all (y,B) in the chain.

• λA(x) > 0 for all (x,A) in the chain and λB(y) > 0 for all (y,B) in the chain.
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• xiA < xi+1 < xi if (xi, A) is in the chain and xiB < xi+1 < xi if (xi, B) is in the
chain.

We call a chain the top chain if x1 > rB.

Note that if any of these conditions do not hold, the mechanism has an easier
solution. If any point v in the zero regions of both A and B were unironed, we could
just set a price of v for both. If the chains did not interleave with flow alternating in,
our series of constraints would end. The top chain structure (and it is key that it is a
top chain) prevents this.

We now provide a complete proof of Theorem 3. First, we provide a construction
of our candidate dual, which is depicted in Figure 4.12. The instance uses defini-
tion 9 of a top chain.

Construction of candidate dual instance:

• Let there exist no point at which A and B both have virtual value zero and
both are unironed, that is, there is no v such that Φλ,α

A (v) = Φλ,α
B (v) = 0 and

λA(v) = λB(v) = 0.

• Let rA > x1 > rB > x2 > x3 > · · · > xM > rB > rA. The dual has a top chain
of length M defined by (x1, A), (x2, B), . . . , (xM , A).

• In addition, we have flow into the other item at each point in the chain: let
αC,B(xi) > 0 for all (xi, A) in the chain as well as αC,A(xi) > 0 for all (xi, B) in
the chain.

• Let λC(v) = 0 for all v, i.e., item C is unironed everywhere.

• For all v where α has not already been defined, let αC,A(v) = αC,B(v) = 0.

We first make some remarks that follow directly from our construction. All
the remarks below (only) talk about our dual and any feasible primal that satisfies
complementary slackness with our dual.

Remark 6. For all i ∈ {1, 3, · · · ,M − 2}, we have xi, xi+1 ∈ [xiA, xiA] = [xi+1A
, xi+1A].

Since this interval is ironed, we have λA(v) > 0 =⇒ a′A(v) = 0 for v in this interval.
Thus, aA(xi) = aA(xi+1).
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Remark 7. For all i ∈ {2, 4, · · · ,M − 1}, we have xi, xi+1 ∈ [xiB, xiB] = [xi+1B
, xi+1B].

Since this interval is ironed, we have λB(v) > 0 =⇒ a′B(v) = 0 for v in this interval.
Thus, aB(xi) = aB(xi+1).

Remark 8. For all i ∈ {1, 2, · · · ,M}, we have uA(xi) = uB(xi).

We now prove a lemma that forms the backbone of our inductive argument:

Lemma 2. For all i ∈ {1, 2, · · · ,M − 1}, we have aA(xi) > aB(xi) ⇐⇒ aA(xi+1) <

aB(xi+1). Similarly, we have aA(xi) < aB(xi) ⇐⇒ aA(xi+1) > aB(xi+1)

Proof. Note that either aA(xi) = aA(xi+1) or aB(xi) = aB(xi+1) by Remark 6 and
Remark 7. We only prove aA(xi) > aB(xi) ⇐⇒ aA(xi+1) < aB(xi+1) for the case
aA(xi) = aA(xi+1) and omit the other (symmetric) cases. Since aA(xi) = aA(xi+1), we
have

uA(xi) = uA(xi+1) + aA(xi) · (xi− xi+1) = aA(xi+1) · (xiB − xi+1) + aA(xi) · (xi− xiB).

We also have, by the structure of the ironed intervals for the item B,

uB(xi) = uB(xi+1) + aB(xi+1) · (xiB − xi+1) + aB(xi) · (xi − xiB)

Now, since the utilities at all points xi is the same for both items A and B

(Remark 8), the fact that aA(xi) > aB(xi) is equivalent to aA(xi) · (xi − xiB) >

aB(xi) ·(xi−xiB) which is equivalent to aA(xi+1) ·(xiB−xi+1) < aB(xi+1) ·(xiB−xi+1)

which, in turn, is equivalent to aA(xi+1) < aB(xi+1).

Finally, we prove Theorem 3.

Proof of Theorem 3. At xM , we have that

uA(xM) = aA(xM) · (xM − xMA
) and uB(xM) = aB(xM) · (xM − xMB

).

Since xMB
> xMA

and aA(xM) > 0, then to ensure that uA(xM) = uB(xM)

(Remark 8), we must have aB(xM) > aA(xM). However, with this fact, Lemma 2 says
that aB(xi) > aA(xi) and aB(xi+1) > aA(xi+1) in alternation.
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Since aA(·) and aB(·) are non-decreasing sequences, they can only alternate if
they have Ω(M) distinct elements.

By Theorem 4, there exists a feasible primal that satisfies complementary slack-
ness. The primal algorithm constructs a mechanism with menu complexity at least
M and satisfies complementary slackness, hence this dual is in fact optimal.

Corollary 9. This idea gives a lower bound for Multi-Unit Pricing as well.

We expand on this on Section 4.12.

4.8 Menu Complexity is Finite: Characterizing the
Optimal Mechanism via Duality

In this section, we’ll characterize the optimal mechanism for three items {A,B,C}
with structure A � C, B � C, and A 6� B,B 6� A. While our approach will be
algorithmic, our focus isn’t to actually run this algorithm or analyze its runtime.
We’ll merely use the algorithms to deduce structure of the optimal mechanism. We
prove essentially that the interleaving of ironed intervals used in the construction of
the previous section is the worst case (in terms of menu complexity of the optimal
mechanism). Still, in order to possibly prove this, we need to at minimum find an
optimal mechanism for every possible instance.

Our approach is the following: we propose a primal recovery algorithm that, given
a dual (λ, α), produces a primal solution that (1) satisfies complementary slackness
with the dual and (2) has finite menu complexity. Obviously, the algorithm can’t
possibly succeed for every input dual (as some duals are simply not optimal for
any instance). But we show that whenever the algorithm fails, the dual has some
strange structure (elaborated below). We then show that the best dual (which is
optimal and always exists, definition below) never admits these strange structures,
and therefore the algorithm always succeeds when given the best dual as input.

Definition 10 (Best Dual). We define the best dual of an instance with three partially-
ordered items to be the (λ, α) satisfying the following:

1. First, (λ, α) is optimal: (λ, α) ∈ arg min{
∑

G∈{A,B,C}
∫ H

0
fG(v)·max{0,Φλ,α

G (v)}dv}.
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2. Among (λ, α) satisfying (1), (λ, α) has the fewest ironed intervals of virtual
value zero. That is, (λ, α) minimizes |I(λ, α)| = |{xG | (x,G) ∈ [0, H] ×
{A,B,C},Φλ,α

G (v) = 0}|.

3. Among (λ, α) satisfying (2), (λ, α) has the lowest positives (lexicographically
ordered). That is, (λ, α) minimizes r̄A, followed by r̄B, followed by r̄C .

Definition 11. A double swap exists when there are consecutive points (x,A) and
(y,B) in a chain, and there is flow into A for v ∈ [xA, y). See Figure 4.14.

Definition 12. An upper swap occurs when there is flow into (x,A) and (y,B) where
x > r̄A > y > r̄B. See Figure 4.15.

Proposition 10. The best dual has no double swaps or upper swaps.

The full proof of Proposition 10 appears below. The high-level approach is
that whenever a double swap or upper swap exists, we can exploit this structure
to modify the dual variables. This creates a better dual solution (with respect to
definition 10) and proves that (2) or (3) respectively must not have held for the
original dual.

Theorem 4. For any best dual solution, we can find a primal with finite menu complexity
that satisfies complementary slackness (and is therefore optimal).

A full proof appears below, but the high-level approach is explained in the
following.

Proof Sketch of Theorem 4. (No bad structures exist in best duals.) First, we try to
satisfy the necessary complementary slackness system of equations as in Section 4.7,
and identify all possible barriers to solutions existing. These barriers are exactly
double swaps or upper swaps, which are not found in best duals by Proposition 10.

(Inductive primal recovery algorithm.) Without these barriers, an inductive
argument shows that we can indeed find an allocation rule that satisfies all of the
complementary slackness conditions. Every dual has a (possibly empty) top chain,
and each point in the chain has another set of preferability constraints for that
item, along with the constraint that the allocation is constant. We use induction to
handle one point in the chain at a time. (See Figure 4.18 in Section 4.8.) We take
the partially-constructed allocation that satisfies the constraints for the chain so
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far, scale it down (and thus continue to satisfy the constraints), and then solve for
the allocation probability that will satisfy the new constraints given by this point
in the chain. As shown in Section 4.7, this requires choosing a different allocation
probability at the bottom of each ironed interval in the chain, but we show that this
is sufficient, giving menu complexity at most the length of the chain + 1.

(Finite menu complexity.) The other interesting part not addressed in Section 4.7
is what to do if there is a chain of countably infinite length (which can certainly
exist). Naively following our algorithm would indeed result in a primal of countably
infinite menu complexity. But, because the sequence of chain points is monotonically
decreasing (and lower bounded by zero), they must converge to some value v. If
they converge, and the chain is indeed infinitely long, then neither A nor B can
possibly be ironed at v, and we can simply set price v for both items instead.

We begin below by reviewing properties of the dual previously observed in Fiat
et al. [2016]; Devanur and Weinberg [2017]. Throughout this section we’ll reference
the “best” dual. While multiple optimal duals might exist, we’ll be interested in a
specific tie-breaking among them (and refer to the one that satisfies these conditions
as “best”).

Theorem 11 (Devanur and Weinberg [2017]). The best dual (λ, α) satisfies the following:

• (Proper monotonicity) (fG · Φλ,α
G )(·) is monotone non-decreasing, for all v.

• (No-boosting) Φλ,α
G (v) ≥ 0 for all G such that there exists a G′ � G.

• (No-rerouting) Φλ,α
G (v) > 0⇒ αG,G′(v) = 0 for all G′.

• (No-splitting) λG(v) > 0⇒ αG,G′(v) = 0 for all G′.

Returning to our three-item example, prior work nicely characterizes the flow
coming out of C in the optimal dual: No-boosting tells us that we must always send
flow out of (v, C) into somewhere whenever Φλ,α

C (v) < 0 (in order to bring it up to
0). No-rerouting tells us that we can never send flow out of (v, C) if Φλ,α

C (v) > 0.
No-splitting tells us that we never send flow out of the middle of an ironed interval.
But, we still need to decide whether to send this flow into A or B. This is the novel
part of our analysis.
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Proof of Proposition 10. By Definition 10, we know that a best dual has the minimum
number of ironed intervals amongst all optimal duals. Similarly, a best dual has the
lowest positives amongst all optimal duals. We prove the proposition using two
lemmas. The first lemma proves that a best dual can’t have double swaps:

Lemma 3. The optimal dual that has the minimal number of ironed intervals does not
contain any double swaps.

First, we discuss why this structure would cause a problem for how we’re used
to satisfying complementary slackness conditions. Complementary slackness forces
that in the ironed intervals [zB, zB] and [y

A
, yA], the allocation is constant, and thus

utility in these regions is linear. However, no linear utility functions can satisfy the
preferability constraints of having utility that is higher for item A, then B, then A,
as illustrated on the left in Figure 4.14.

Figure 4.14: Left: Complementary slackness forces linear utility in ironed intervals.
For any choice of linear utility functions, we cannot satisfy the preferability con-
straints imposed by the double swap for item A, then B, then A in this region. The
violated constraint corresponds to the circled arrow. Right: The operation used in
the proof of Lemma 3, using a double swap to maintain virtual welfare and create
fewer ironed intervals.

Proof. Proof by contradiction. Suppose that somewhere in the top chain, some point
in the chain (x,A) is succeeded by (y,B) and αC,A(z) > 0 for some z ∈ (xA, y),
creating a double swap. We consider the following operation (depicted on the right
in Figure 4.14) that pushes flow down within the ironed interval [xA, xA] and does
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the reverse on B, yet negates the change in flow at z to maintain the virtual values
below here. Move ε flow from (x,A) to (x,B). Move γ flow from (y,B) to (y, A).
Move α flow from (z, A) to (z,B). We will set

α =

(
x− y
y − z

)
ε and γ =

(
1 +

x− y
y − z

)
ε.

First, this ensures that ε− γ + α = 0, and thus for v ≤ z, Φ̂λ,α
A (v) = Φλ,α

A (v) as well
as Φ̂λ,α

B (v) = Φλ,α
B (v). Second, this ensures that ε(x− z)− γ(y − z) = 0, keeping the

average virtual value from z to x the same for both items.∫ x

z

fA(v)Φ̂λ,α
A (v)dv =

∫ y

z

fA(v)(Φλ,α
A (v) + ε− γ)dv +

∫ x

y

fA(v)(Φλ,α
A (v)− γ)dv

=

∫ x

z

fA(v)Φλ,α
A (v)dv + ε(x− z)− γ(y − z)

=

∫ x

z

fA(v)Φλ,α
A (v)dv

However, the virtual values in [y, x] are increasing for item A and decreasing for
item B, and likewise those in [z, x) are decreasing for item A and increasing for item
B. If we choose ε small enough as to not uniron the interval [xA, x̄A], the change gets
spread around the interval and the interval remains all zeroes. However, for item
B, the interval [y

B
, ȳB] becomes positive while the region above becomes negative.

Since the average of both regions is the same and there is now a non-monotonicity,
the regions will be ironed together, creating a larger ironed interval with virtual
value zero.

Since the virtual welfare of the dual hasn’t changed, but we have reduced the
number of ironed intervals, then we did not start with an optimal dual with the
fewest possible ironed intervals, deriving a contradiction.

The second lemma proves that a best dual can’t have upper swaps:

Lemma 4. The optimal dual that has the lowest positives does not contain any upper swaps.

Proof. Proof by contradiction. Suppose an upper swap exists. Then (as depicted
on the right in Figure 4.15) we can push up α flow from (y,B) to (x,B), causing
fB(v)Φ̂λ,α

B (v) = fB(v)Φλ,α
B (v) − α for v ∈ [y, x] and improving virtual welfare by
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Figure 4.15: The operation used in the proof of Lemma 4, using a upper swap to
maintain virtual welfare and create lower positives.

α(x− y). To leave the flow out of item C unchanged, we balance this out by pushing
α flow down from (x,A) to (y, A), causing fA(v)Φ̂λ,α

A (v) = fA(v)Φλ,α
A (v) + α for

v ∈ [y, x].
If y is unironed at A, that is, ȳA = y, or if ȳA < r̄A, then by choosing α =

−fA(ȳA)Φλ,α
A (ȳA), this will cause ˆ̄rA = ȳA, lowering the positives.

Alternatively, if y is ironed up to r̄A such that ȳA = r̄A, then we can choose a very
small α to keep the interval [y

A
, r̄A] ironed, making the whole interval positive and

causing ˆ̄rA = y
A
, lowering the positives. The dual will only increase by α(x − y),

even when the values are ironed around, as ironing preserves virtual welfare. This
is canceled out by the improvement in virtual welfare from item B. Then we have
maintained virtual welfare but lowered the positives, showing that this dual solution
could not have had the lowest positives.

Lemma 3 and Lemma 4 comprise the proof of Proposition 10.

Now we prove that our primal recovery algorithm always succeeds in finding
an optimal primal (that satisfies complementary slackness) when given a best dual.

Proof of Theorem 4. First, consider the case where there exists some point v where
Φλ,α
A (v) = Φλ,α

B (v) = 0, and v is unironed both in A and in B. Then we simply set v
as a price for both A and B, automatically satisfying the complementary slackness
conditions of flow into A or B, as both are equally preferable. Since both items A
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and B, have the same allocation rule, the instance degenerates into a FedEx instance.
Thus, an optimal allocation rule for the item C can be determined.

Otherwise, the dual solution contains no point v as described in the first case,
meaning that ironed intervals interleave throughout the region of zero virtual values.
This means that, if without loss of generality r̄A > r̄B, that r̄B = x must sit in an
ironed interval [xA, x̄A] on A.

If the top chain is empty, then we have r̄A > r̄B > xA with no flow into A for any
v ∈ [xA, x̄A]. Then, setting

aA(v) =


1 v ≥ x̄A
r̄A−r̄B
r̄A−xA

v ∈ [xA, x̄A)

0 otherwise

and aB(v) =

1 v ≥ r̄B

0 otherwise

makes both options equally preferable for all v except for v ∈ [xA, x̄A], where report-
ing B is strictly preferable, but this does not violate complementary slackness by
the assumption that the top chain is empty.

Otherwise, the top chain is non-empty. A dual gives a system of utility inequali-
ties via complementary slackness which the allocation rule must satisfy. Instead, we
can solve a system of utility equalities given by the chain via induction on the length
of the top chain, and this will imply a solution that satisfies all of the inequalities.
More specifically, the following will hold for top chains of all lengths:

1. The allocation rule will only increase at the bottom of ironed intervals in the
chain. That is, if the allocation rule increases at z, so a′A(z) > 0, then z must be
the bottom of an ironed interval for a point (x,A) in the top chain, thus z = xA,
and aA(x) = aA(xA).

2. We will fully allocate to all positive virtual values. That is, aA(r̄A) = aB(r̄B) = 1.

3. If (x,A) is followed by (y,B) in the chain, then aA(x) = aA(xA) > aB(y) =

aB(y
B

).

4. At any point (x,A) in the top chain, we will have uA(x) = uB(x).

5. An alternative solution can, for the first point in the chain (x,A), vary aA(xA)

such that the utility constraint is a strict inequality uA(x) > uB(x), and instead



107

we have equality at r̄A: uA(r̄A) = uB(r̄A). This gives an equal expected price
for the two items, and equal utility for all values v ≥ r̄A.

To satisfy complementary slackness, for any type (x,A) with flow in, it must be
that uA(x) ≥ uB(x). We now show why (3-4) imply that complementary slackness
will be satisfied everywhere.

Consider a subsequence of points in the chain: (x,B), (y, A), (z, B), hence y > xB

and z > y
A

. Then aB(x) > aA(y) > aB(z) by (3). Since uA = uB for every point in the
chain and a larger allocation rule implies a larger change in utility, we can deduce
that uA(v) ≥ uB(v) for all v ∈ [z, y].

• For v ∈ (y
A
, xB), we have that aA(v) > aB(v), and since uA(z) = uB(z), then

uA(v) ≥ uB(v) in this region.

• For v ∈ (xB, y), we have that aB(v) > aA(v), and since uA(y) = uB(y), then
uA(v) ≥ uB(v) in this region.

• By definition of a double swap, there is no v ∈ [y
A
, z) such that there is flow

into (v, A). Likewise, there is no v ∈ [xB, y) such that there is flow into (v,B).

Hence all possible complementary slackness conditions are satisfied.

Figure 4.16: Left: A candidate dual (with no double or upper swaps); part of a chain.
Right: An allocation that satisfies complementary slackness up to value y, satisfying
equal preferability at z and y and preferability at all points with flow in.
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We now show that these sufficient properties hold by induction. As a base case,
consider when there is one point in the top chain, which without loss is (x,A). By
definition of the top chain, r̄A > x > r̄B > xA and there is flow into itemA at x, which
is in ironed interval [xA, x̄A]. We can set aA(xA) = x−r̄B

x−xA
and set aA(r̄A) = aB(r̄B) = 1.

Then

uA(x) = aA(xA) · (x− xA) =
x− r̄B
x− xA

· (x− xA) = 1(x− r̄B) = uB(x).

Figure 4.17: Left: The base case of a candidate dual with an empty chain. Right: An
allocation that satisfies complementary slackness.

Then conditions (1-4) are met. To satisfy (5), we can instead set aA(xA) = r̄A−r̄B
r̄A−xA

.
Then

uA(r̄A) = aA(xA) · (r̄A − xA) =
r̄A − r̄B
r̄A − xA

· (r̄A − xA) = 1(r̄A − r̄B) = uB(r̄A).

For the inductive hypothesis, suppose for any chain of length n, we have alloca-
tion rules such that (1-5) hold.

Now consider a chain of length n + 1. Without loss of generality, let (x,A) be
the top point in the chain, where x sits in the ironed interval [xA, x̄A], and this point
is proceeded by (y,B) which sits in [y

B
, ȳB], hence r̄A > x > r̄B and y > xA by

definition of the chain.
By the inductive hypothesis, we can come up with allocation rules aA(·) and

aB(·) that satisfy complementary slackness to the same chain without the highest
point (x,A), and will have aA(xA) = aB(r̄B) = 1. We construct an allocation rule
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â for the top chain of size n + 1 as follows; this is depicted in Figure 4.18. Let
λ = x−r̄B

x−y−aB(y
B

)(r̄B−y)
< 1. Then let

âA(v) =

1 v ≥ r̄A

λaA(v) otherwise
and âB(v) =

1 v ≥ r̄B

λaB(v) otherwise.

This clearly satisfies (1-3). To show that (4) holds, we observe that at any previous
point of concern v < r̄B, we had uA(v) = uB(v). Now at those points, we have
ûA(v) =

∫ v
0
âA(v)dv = λ

∫ v
0
aA(v)dv = λuA(v). This holds for ûB(v) = λuB(v) as well.

Thus, complementary slackness is still satisfied at all previous points v ≤ r̄B; we
only need to check equal utility at x.

ûA(x) = ûA(y) + âA(xA)(x− y) = λuA(y) + λ · 1 · (x− y)

ûB(x) = ûB(y) + âB(y
B

)(r̄B − y) + âB(r̄B)(x− r̄B) = λuB(y) + λ · aB(y
B

)(r̄B − y) + 1 · (x− r̄B)

Then to have ûA(x) = ûB(x), since uA(y) = uB(y), we require that

λ(x− y) = λ · aB(y
B

)(r̄B − y) + 1 · (x− r̄B).

The solution here is exactly the λ defined above.
Alternatively, by replacing x with r̄A, thus setting λ = r̄A−r̄B

r̄A−y−aB(y
B

)(r̄B−y)
, we get a

solution that has uA(x) > uB(x) and uA(r̄A) = uB(r̄A) as required in (5).
Thus we have ensured that for top chains of all lengths, we can give an allocation

rule that satisfies complementary slackness for all values from the bottom to the top
of the chain. For v below the chain, uB(v) = uA(v) = 0, so we automatically satisfy
complementary slackness. Above the chain, if we have used the alternate solution
that (5) guarantees exists, we automatically satisfy complementary slackness for
v ≥ r̄A. This would only fail if there is flow into item B for v ∈ [x, r̄A)—that is, if
the dual contains a upper swap, but by assumption it does not. Then for any dual
solution with no double swaps or upper swaps, this algorithm gives an allocation
rule that satisfies complementary slackness.

We prove that the menu complexity of the mechanism output by this algorithm
is finite below:

Claim 6. The menu complexity is always finite.



110

Proof. Proof by contradiction. Suppose that there exists an instance such that the
mechanism output by the algorithm has infinite menu complexity.

Note that this can only happen if the length of the top chain is infinity. Thus,
there exists a sequence of points (x1, A), (x2, B), (x3, A), · · · such that the point (xi, A)

is inside an ironed interval [xiA, xiA] and xi+1 ≥ xiA. Analogous claims hold for an
element (xi+1, B) in the chain.

Thus, we have

x1 ≥ rB ≥ x2B ≥ x2 ≥ x1A
≥ x3A ≥ x3 ≥ · · ·

Since the infinite sequence x1, x2, · · · is monotone and bounded, it converges to
a limit, say x∗. Observe that x∗ satisfies Φλ,α

A (x∗) = Φλ,α
B (x∗) = 0 and is unironed.

This is because points arbitrarily close to it are unironed and are zeroes of Φλ,α
A (·)

and Φλ,α
B (·). However, in this case, our algorithm just sets the price x∗ and thus has

constant menu complexity, a contradiction.

4.9 An Exact Characterization Under the Assumption
of DMR

Recall from Subsection 4.3.2 that when the distributions are DMR, λG(v) = 0 for all
(v,G). Our main result is the following:

Theorem 12. Consider any partially-ordered preferences for items. If the marginal distribu-
tion for each item is DMR, the optimal mechanism is deterministic.

4.9.1 Intuition

For a partial ordering given by G,� represented as a DAG such that the marginal
distributions satisfy DMR, the optimal mechanism will set prices as follows. The
algorithm is analogous to that in FedEx.

• For items G that are leaf nodes in the DAG, set pG = rG.
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Figure 4.18: Top Left: A top chain from a candidate dual. We use the inductive
hypothesis on the chain of one size smaller (below the green line). Top Right: The
allocation rule from the inductive hypothesis that satisfies all CS constraints on
the smaller chain (below the green line). Bottom Left: The scaled allocation rule,
requiring preferability of A between the green lines. Bottom Right: The allocation
rule that satisfies these preferability constraints.

• From better items to worse items, in reverse depth from the leaf nodes, we will
define a least upper bound on each node’s price based on the prices set for the
better items. We define p̄G = minG′∈N+(G) p̄G′ to be the least upper bound on
G’s price. Then set a price of pG = min{p̄G, rG} for G.

In our pricing algorithm, nodes G are limited by the smallest rA for any A that
they have a directed path to. From complementary slackness, every rA that a node
G has a path to is an upper bound on the price that can be set for G, so the smallest
of these upper bounds is the most limiting. We define p̄G to be this smallest upper
bound, and we define LG to be the nodes from G’s 1-out-neighborhood who are
also constrained by this upper bound. Thus, if we follow the sets LG, we result in
all of the limiting nodes with rA = p̄G.
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When we send flow out of G, we aim to send it along the path to the node that
limitsG’s price the most. We do this recursively, sending fromG to the most limiting
neighbor, and from there to that node’s most limiting neighbor, splitting the flow
equally if there are several limiting neighbors. This raises (does not lower) the
limiting reserve. We update regularly to ensure that we are always sending flow to
the now-limiting reserve, raising it, and thus minimizing the constraints on G. This
is almost exactly the construction: the only caveat is that we should never send flow
out of an item B at v where fB(v)Φλ,α

B (v) > 0. If we send into a B along the path
where this is the case, we instead send out at rB < v.

Formally, we set the dual variables according to the following algorithm:

Dual variable construction:
Base case: For leaf nodes, there is nowhere to send flow. p̄A = rA.
for all nodes A starting from the leaf nodes and in increasing reverse depth (#
edges from leaf nodes) do
p̄A = minB∈N+(A) p̄B

For all v from rA down to 0, determine the minimal amount of flow out σA such
that ϕA(v) = 0.
for v from 0 to rA do

Update(A, v, σA(v))
end for

end for

Update(A, v, γ):
Let LA := {argminB∈N+(A)p̄B}.
for all B ∈ LA do

Send αA,B(v) = 1
|LA|

γ.
Update(B,min{v, rB}, γ).

end for

The key idea is that the price of G is limited by the smallest rA where A is some
better item than G, that is, there is a path from G to A in the DAG representing the
partial ordering. As we send flow along the path to A, we raise rA and it becomes
less limiting. We will maintain a set of the items that limitG the most, SG, which are
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precisely the items A such that rA = p̄G. Because we are in the continuous setting,
sending flow is a continuous process, so the most limiting item never discretely
jumps up higher and becomes no longer limiting. Instead, all limiting items stay in
the set SG and this set grows as the upper bounds raise up and become less limiting.

We define LG ⊆ N+(G) to be the items such that, for all B ∈ LG, there exists v
such that αG,B(v) > 0. What this means is that p̄G = p̄B , and B is on the path (if not
the end of the path) from G to a limiting item A ∈ SG. We will track the updated p̄G
with r. If A ∈ SG, then fA(r)Φλ,α

A (r) = 0, and if B is on a path to some limiting A,
then fB(r)Φλ,α

B (r) ≤ 0.
In every step, we decrease the amount of flow to send and increase r. We

terminate when there is no flow left to send. The point r only increases and the set
SG only increases. We maintain the above properties.

First, we set the flow out of G:

∑
A∈N+(G)

αG,A(v) =

0 v > r̄G

−R̂′′G(v)/fG(v) v ≤ r̄G.

Lemma 5. For every G, we can always send σG out of G distributed among N+(G) such
that

1. If αG,B(x) > 0 for any x then B ∈ LG.

2. If B ∈ LG then fB(r)Φλ,α
B (r) = 0.

3. If B ∈ N+(G) r LG then r < rB and thus fB(r)Φλ,α
B (r) ≤ 0.

Proof. Suppose we have σG(v) flow to send at v. Let Z = argminB∈N+(G)rLG
pB be

the next possible upper bound to hit.
We choose ε such that by sending σG flow along paths to all items in SG with

correct proportions, we will maintain SG and raise r by ε. That is,∑
A∈SG

fA(r + ε)Φλ,α
A (r + ε) = σ.

If r + ε < pZ , we can send this flow without growing SG. Let P(G,A) denote the
edges forming every path fromG to A. For every (C,D) ∈ P(G,A) for some A ∈ SG,
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we set
αC,D(v) =

∑
A∈SG:(C,D)∈P(G,A)

fA(r + ε)Φλ,α
A (r + ε) ∀A ∈ LG

we ensure that after this update, fA(r + ε)Φλ,α
A (r + ε) = 0 for all A ∈ SG. Update

r ← r+ ε. Clearly (2) holds, and (3) holds since r < pZ < pB for all B ∈ N+(G)rLG.
Otherwise, r + ε ≥ pZ and v ≥ pZ . Then we instead choose ε = pZ − r and

make the same update described above, then add Z to LG and add the item Y that
is limiting Z, that is, Y such that pZ = RY , to SG. Note that we have sent positive
flow, but the flow sent is < σ. After the update, we will have r ← r + ε = pZ and
fA(r)Φλ,α

A (r) = 0 for all A ∈ SG, including Y . Then clearly (2) holds, and (3) holds
since r = pZ < pB for all B ∈ N+(G) r LG.

Finally, (1) holds in both cases as we only send flow to elements of SG and SG is
non-decreasing.

Lemma 6. For every v and G, our choice of αG,A(w) for all w ∈ [0, H], A ∈ N+(G)

maintains λG(v) = 0 for all v.

Proof. Since the flow out of G is chosen exactly to bring all virtual values to 0 below
r̄G, no non-monotonicities are caused.

Lemma 7. For every v and G, any choice of αA,G(w) for all w ∈ [0, H], A ∈ N−(G)

maintains λG(v) = 0 for all v.

Proof. Suppose we get flow α into G at x. Every value v ≤ x has fG(v)Φλ,α
G (v) de-

crease by α while this remains unchanged for v > x, causing no non-monotonicities.

Lemma 8. The following deterministic allocation rule always satisfies complementary
slackness with the dual: Set pG = min{rG, rA : A ∈ SG}.

Proof. From DMR and our setting of λ, we will have λG(v) = 0 for all (v,G), auto-
matically satisfying complementary slackness for these variables. Further, even after
sending α flow, fG(·)Φλ,α

G (·) will be properly monotone for all G by Lemma 6 and
Lemma 7.

First, we verify that the when we set a price, the virtual values are 0 at that price,
so we have the freedom to do so.
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By Lemma 5, fA(r)Φλ,α
A (r) = 0 for all A ∈ SG. Of course, by definition of r̄,

fA(rA)Φλ,α
A (rA) = 0. In addition, by definition of the flow out of G, fG(v)Φλ,α

G (v) = 0

for all v ≤ r̄G so fG(r)Φλ,α
G (r) = 0. Then all of the prices posted are viable.

It remains to choose a mechanism that satisfies complementary slackness with
the α variables. If αG,B(v) > 0 for some v then we know that (1) B ∈ LG and (2)
v < r̄G.

By Lemma 5, the variable αG,B(v) > 0 for any v if and only if v ∈ LG, a monotone
increasing set as v increases. In this case, then p̄B = p̄G and both are set at this
price, satisfying uG(v) = uB(v) for all v and automatically satisfying complementary
slackness.

4.10 Equivalence with Single-Minded Valuations

In the introduction, we note the following observation.

Observation 13. The partially-ordered setting is equivalent to the single-minded setting.

First, we define the single-minded setting.

Definition 13. In a single-minded setting, a seller determines how to sell any bundle
of m items. A buyer has a (value, bundle) pair (v,B) where B ∈ 2[m] is any subset of
items. The pair (v,B) is drawn from a joint probability distribution over [0, H]× 2[m]

where H is the maximum possible value of any bidder for any item.

Any single-minded setting can be represented as a partially-ordered setting: the
set of possible interests G is just the set of possible bundles, 2[m]. The relation is set
containment: an interest G dominates an interest G′, that is, G � G′, if G ⊃ G′. The
distribution F is identical.

Any partially-ordered setting can be represented as a single-minded setting: we
can invent items such that every interest G maps to some subset of items. For any
minimal interest G (that is, G which does not dominate any other interests), map
G to a new item i: B(G) = {i}. For each successive interest G′ ∈ N+(G), map G′ to
B(G′) = {j} ∪

⋃
G′′:G′∈N+(G′′) B(G′′) where j is a new additional item. Repeat this

process, completing a mapping from interests to subsets of some m created items.
For all subsets B ∈ 2[m] which do not have an interest that maps onto it, assign
measure 0 to the event of drawing (v,B) from F . Otherwise, fB(G)(v) = fG(v).
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4.11 The Master Theorem

All of the analysis in the previous section started from a candidate dual solution,
and showed that such duals are optimal (as in, there is a feasible primal satisfying
complementary slackness). The missing step is ensuring that there exists an input
distribution for which these duals are feasible. To save ourselves (and future work)
the tedium of hand-crafting an actual distribution for which these duals are feasible,
we prove a general Master Theorem, essentially stating that for a wide class of duals
(essentially, anything dictated by ironed intervals, positive/negative regions, and
flow in), there exists a distribution for which this dual is feasible.

Theorem 14 (Master Theorem). Suppose we are given a partial order over G, for each
item G ∈ G candidate endpoints of zero region (bounded away from 0) r̄G, rG, a finite set of
candidate ironed intervals (bounded away from zero) [xi,G, xi,G] with rG ≤ xi,G ≤ xi,G ≤ r̄G,
and for each pair of items G′ � G a finite set of candidate flow-exchanging points (bounded
away from zero) yi,G,G′ not in (xi,G, xi,G] for any candidate ironed interval. Then there exists
a joint distribution over (value, interest) pairs with a feasible dual (λ, α) such that:

• the endpoints of the zero region for Φλ,α
G are rG and r̄G.

• the ironed intervals of Φλ,α
G are exactly to the intervals [xi,G, xi,G] (no others).

• αG,G′(y) > 0⇔ y = yi,G,G′ for some i.

Note that from the proof the Master Theorem, it is clear how to explicitly construct
a distribution for the lower bound (although this is a tedious and unilluminating
process).

In this section we provide a complete proof of Theorem 14. On our way to prove
this theorem, we generalize a result of Saxena et al. [2018], in which they show
that for totally ordered preferences, one can always find a discrete distribution
that produces a well-enough-behaved revenue curve. They use this result to show
that there exist instances for which the menu complexity is the worst possible,
exponential in the number of items. Here we extend their construction and show
that for any well-enough-behaved set of continuous revenue curves for the partially
ordered setting, there exist distributions that induce them.

The first step is to generalize the result of Saxena et al. [2018] from discrete
distributions to continuous distributions.
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Lemma 9 (Revenue Theorem for Continuous Curves). Given a continuous curve
R : [1, H] differentiable everywhere except at countably many points, such that R(1) = 1

and |R′(x)+|, |R′(x)−| ≤ 1
2H
∀x ∈ [1, H], there exists a distribution F such that R is the

revenue curve that arises from selling to a single bidder with a valuation drawn from F .

Proof. Consider the following distribution

F (x) = 1− R(x)

x
, x ∈ [1, H]

and F (x) = 0 for x ≤ 1, F (x) = 1 for x ≥ H . In order to show that this is a valid
distribution, it suffices to show that it is monotonic non-decreasing. For that, we
consider its derivative and show it is non-negative everywhere:

F ′(x) =
−xR′(x) +R(x)

x2
.

It suffices to show that the numerator, R(x) − R′(x)x, is always non-negative.
Note that for x ≥ 1, R(x) ≥ 1

2
(since R(1) = 1 and the derivative doesn’t change fast

enough) and |R′(x)+| ≤ 1
2H

. Since x ≤ H , the claim follows.
It remains to show that indeed the revenue from this distribution matches the

curve R(x). Consider setting a price of x, then the revenue of selling at x is exactly
x(1− F (x)) = R(x).

Now we want to extend this to say we can find distributions for revenue curves
with specific properties that will be useful.

Theorem 15 (Master Theorem for Single Item). Given candidate endpoints of zero region
x+, x− and candidate ironed interval endpoints [xi, xi]

k
i=1 (where x− ≤ xi ≤ xi ≤ x+) there

is a distribution F such that the revenue curve induced by a bidder whose valuation is drawn
from F satisfies

• Φλ,α(x)f(x) is negative for x < x− (i.e. x− is the lower endpoint of the zero region),

• Φλ,α(x)f(x) is positive for x > x+ (i.e. x+ is the upper endpoint of the zero region)
and,

• the ironed intervals correspond exactly to the intervals [xi, xi] for i = 1 to k.
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Proof. We will reduce the problem of finding a valid distribution to that of construct-
ing a revenue curve that will guarantee these properties and then apply Lemma 9.
Consider the following revenue curve:

R(x) =



x 0 ≤ x ≤ 1,

1 + x
2H

1 ≤ x ≤ x−,

1 + x−
2H

x− ≤ x ≤ x1

1 +
x−+x1−x

2H
x1 ≤ x ≤ x1+x1

2

1 + x−+x−x1
2H

x1+x1
2
≤ x ≤ x1

. . .

1 + x−
2H

xi−1 ≤ x ≤ xi

1 +
x−+xi−x

2H
xi ≤ x ≤ xi+xi

2

1 + x−+x−xi
2H

xi+xi
2
≤ x ≤ xi

. . .

1 + x−
2H

xk ≤ x ≤ x+

1 + x−
2H
− x−x+

2H(H−x+)
(x− + 1) x+ ≤ x ≤ H.

This revenue curve is such that R(1) = 1 and |R′(x)| ≤ 1
2H

for x ∈ [1, H]. This
allows us to claim that there is a distribution that induces this revenue curve. More-
over, from the way we constructed this revenue curve, the derivative is positive
from 0 to x−, negative from x+ to H , goes from negative to positive for the intervals
[xi, xi] and is 0 elsewhere. We will show that these conditions are sufficient to make
the virtual values take the signs we intend them to.

It suffices to note that the sign of the derivative of the revenue at x is the opposite
of the sign of the virtual value at x (noted in Definition 5). By construction, our
revenue curve has negative slope on values higher than x+ and positive slope on
points below x−. The intervals in between will be ironed and turn into 0 slope
intervals.

Remark 16. It is possible to relax the condition that all ironed intervals are between x−, x+.
It is not hard to see how to adapt the proof to have ironed intervals either in [1, x−] or [x+, H].
It is sufficient to add dimpled intervals, like the ones in our construction, as the revenue
curve is increasing or decreasing. We don’t need them for our main result, hence don’t worry
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about this more general result. Likewise, the revenue curve R could be made differentiable
everywhere if we used a smoother function to transition between the ironed and non-ironed
intervals, as opposed to straight lines.

Proof of Theorem 14. If the constraint over flows wasn’t there, the problem would be
a direct application of Theorem 15. Unfortunately, the flow constraints may affect
the virtual values of neighboring items. It is not hard to predict how outgoing
and incoming flow will change the virtual values for the different items. From the
study of duality in this context we know that if there is ε-flow leaving from (yi, G)

to (yi, G
′) (where G′ ∈ N+(G)), then the virtual values of all points of item G with

y ≤ yi will increase by ε and all points of item G′ with y ≤ yi will decrease by ε.
Thus, given that we know what we want the revenue curves to look like after all flow
has been sent, we can reverse engineer what they must look like in order to make
that happen. In particular, since the flows shift the virtual values by a constant it
will suffice to subtract a function whose value is 0 before yi and becomes a line with
small, negative slope at xi (say, slope ε = 1

2H
) from the “suggested” (by Theorem 15)

revenue curve for item G (since these will increase by ε after the flow is sent) and
add positive slope functions of the same value at xi on item Gi,G from its suggested
revenue curve (since these will decrease by ε after the flow is sent). This is sufficient
because of the connection between virtual values and revenue curves argued before:
the derivative corresponds to changes in the virtual value. So for a constant change
in virtual value, the matching change would be adding a linear term to the revenue
curve of opposite sign. The order in which we do these changes is by processing
items from leaves to the root (i.e. only process a node once all its children have been
processed) and within an item G, address the flow-exchange values from smallest
to largest.

We abuse this opportunity to prove a similar result for the multi-unit pricing
setting.

Theorem 17 (Master Theorem for MUP). Suppose we are given a MUP instance where
the buyer can get up to n copies of an item. LetGi for 1 ≤ i ≤ n be the item corresponding to i
copies. For each itemGi we are given candidate endpoints of the zero region x−i, x+i and a set
of candidate ironed interval endpoints [xj,i, xj,i]

ki
j=1 with x−i ≤ xj,i ≤ xj,i ≤ x+i. Moreover,

for each tuple (i, i+ 1) and (i, i− 1), we are given a set of candidate flow-exchanging points
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yj,i,i+1 and yj,i,i−1 not in (xj,i, xj,i] for any candidate ironed interval. Then, there exists
distributions FG for all items G such that:

• the endpoints of the zero region for Gi correspond to x−i, x+i,

• the ironed intervals correspond exactly to the intervals [xj,i, xj,i]
ki
j=1 (and no other),

• the dual of the problem is such that there αGi,Gi+1
(yj,i,i+1) ≥ 0 (i.e. there is flow sent

from Gi at yi to Gi+1 into yj,i,i+1 and no other flow from i to i+ 1).

• the dual of the problem is such that there αGi,Gi−1
(yj,i,i−1) ≥ 0 (i.e. there is flow sent

from Gi at yi to Gi−1 into i−1
i
yj,i,i−1 and no other flow from i to i− 1).

Proof. This proof is similar to that of 14 with the exception that on the former,
increasing the flow from (v,G) to (v,G′) (with G′ ∈ N+(G)) by a little bit increases
and decreases the virtual values below v by the same amount. This is no longer true
since we are moving from (yj,i,i−1, Gi) to ( i−1

i
yj,i,i−1, Gi−1). In this case, sending ε flow

from (yj,i,i−1, Gi) to ( i−1
i
yj,i,i−1, Gi−1) increases the virtual values below (yj,i,i−1, Gi)

by ε but decreases the ones on the other end by only i−1
i
ε. So, in order to reverse

engineer the change in virtual value induced by this setting we need to add the
same functions as in the proof of Theorem 14 to the revenue curve suggested for Gi

and add a i
i−1

-scaled version of it for the receiving item at the point ( i−1
i
yj,i,i−1, Gi−1)

on the revenue curve for Gi−1. The order in which these we do these changes is
by processing items from leaves to root (i.e. from Gn to G1) and within a item Gi,
address the flow-exchange points from smallest to largest.

4.12 A Candidate Dual for a Lower Bound on
Menu-Complexity for the Multi-Unit Pricing
Problem

Consider an MUP instance where the buyer can get one, two, or three copies of a
given item. The relevant complementary slackness constraints in this setting go
from

• Rightwards. For all v, from (v, 1)→ (v, 2) and (v, 2)→ (v, 3). This is because
a buyer can always misreport and get more items.
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• Leftwards. For all v, from (v, 2) → (v/2, 1) and (v, 3) → (2v/3, 2). This is
because a buyer would prefer getting fewer items if they are available for
much cheaper.

As shown in [DHP ’17], a buyer of type (v, C)’s utility for reporting (v/2, A) is
given by uA(v/2) =

∫ v/2
0

aA(x)dx. The same buyer’s utility for reporting (v,B) is
given by uB(v) = 2

∫ v
0
aB(x)dx.

To construct a lower bound for the MUP instance, we adapt our construction from
the partially ordered case. We describe our construction formally below, but note
here all the relevant differences. Observe that the incentive compatibility constraints
for the MUP instance described above hide a partially ordered instance inside them.
Indeed, the ‘item’ 2 is analogous to the item C, while the items A and B are the
items 1 and 3 respectively. Just like the partially ordered instance, there are incentive
compatibility constraints from (v, 2)→ (v, 3) for all v. The only difference is that the
constraints from (v, 2)→ (v, 1) have been replaced by those from (v, 2)→ (v/2, 1).
Also, there are ‘new’ constraints from (v, 1)→ (v, 2) and (v, 3)→ (2v/3, 2).

We claim that, despite these changes, the essence of our argument there still
holds. Roughly speaking, our argument there involved constructing a top-chain
(see Definition 9) oscillating between items A and B. For any value x in this chain,
we had flow coming from C to both A and B. Reasoning about complementary
slackness constraints, then, gave us our lower bound.

For the MUP case, we can still do all the above things with the caveat that the
value (v/2, 1) has to be treated as if it were (v, 1). An analogous master theorem can
still be proved as the effect of the ‘diagonal’ flow on the virtual values is predictable.
Using the master theorem, we can construct (essentially) any dual we want. Thus,
we can have a feasible dual with a top-chain of an arbitrary length M oscillating
between items 1 and 3. Also, we have flow from the item 2 to both 1 and 3 at all
values in this top-chain. Chasing through the complementary slackness constraints
in this dual again gives us a lower bound.

To highlight this analogy, in what follows, we use C instead of 2, A instead of 1,
and B instead of 3.

Formally, we construct given an integer M > 0, a dual containing a top chain
amongA andB of lengthM . That is, a sequence of points (x1, A), (x2, B), . . . , (xM , A)

such that
xM/2

A
< xM−1B

/2 < · · · < x2B
/2 < x1/2

A
.
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In this dual, we have no extra space between the ironed intervals:

• rA = xMA
/2, rA = x1A/2, and for i such that (xi, A) and (xi+2, A) are in the

chain, xi/2
A

= xi+2/2A.

• rB = xMB
, rB = x2B, and for i such that (xi, B) and (xi+2, B) are in the chain,

xiB = xi+2B.

Recall that by definition of the · and · operators, (xG, xG] is ironed in G. Also by
our definitions, fG(v)Φλ,α

G (v) > 0 for v ≥ r̄G; fG(v)Φλ,α
G (v) = 0 for v ∈ [rG, r̄G];

fG(v)Φλ,α
G (v) < 0 for v ≤ rG.

We will also define C to be DMR (and thus have no ironed intervals) with
rC = 2rA and r̄C = 2r̄A.

We adapt the flow from the partially ordered lower bound example: for any
(x,G) in the chain, αC,A(x→ x/2) > 0 and αC,B(x→ x) > 0.

Figure 4.19: The analogue of the partially ordered candidate dual, adjusted for the
Multi-Unit Pricing problem.

Theorem 18. To satisfy complementary slackness with the candidate dual, the allocation
requires M distinct allocation probabilities; the menu complexity is at least M .

Proof. The proof is almost identical to that of Theorem 3. Using the constraint that the
allocation can’t increase in the middle of an ironed interval and that uA(x/2) = uB(x)
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for all (x,G) in the chain, we show that the allocations must be non-zero throughout
the chain.

Then, we show that for consecutive points in a chain (xi, A), (xi+1, B) that (1/2)aA(xi/2) >

2aB(xi+1), and similarly, for (xi, B), (xi+1, A), that 2aB(xi) > (1/2)aA(xi+1/2)

This is enough to show that all of the menu options must be distinct, requiring
meu complexity ≥M .
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5 Proportional Complementarities

5.1 Introduction

Consider a setting where multiple items are being sold, and a buyer’s valuations
for the items have complementarities. That is, the buyer derives some value from
owning a combination of items that is not present when owning any of the items
individually, as in the following examples.

Microsoft Office Example: A person who values producing documents will value
software such as Microsoft Word that helps him in this task. If the person wants to
include some charts in his document, then this is made easier and faster by having
another piece of software that specializes in making charts such as Microsoft Excel.
Thus owning Excel in addition to Word boosts the value of Word for him, since he
can then produce more documents in the same amount of time.

Cloud Services Example: A cloud service provider offers multiple heterogeneous
items that are both substitutes and complements. You can purchase a general pur-
pose virtual machine (VM) or a special purpose VM such as a “data science VM”;
these are substitutes. You can also purchase an upgrade such as a fast solid state
disk-drive (SSD) which would be complementary to either of those VMs.

The goal of this work is to understand how a revenue-maximizing seller should
price items such as Microsoft Office products or cloud services when facing a buyer
with such complementarities. To this end, we introduce a new model of complemen-
tarities, design a pricing scheme for this model, and show worst-case approximation
guarantees.

5.1.1 Related Work: Simple and Approximately Optimal Pricings

In recent years, there has been a surge of research activity on optimal combinatorial
pricing. This is the problem of determining and pricing bundles of heterogeneous

This chapter is based on joint work with Yang Cai, Nikhil Devanur, and Preston McAfee in
a paper titled “Simple and Approximately Optimal Pricing for Proportional Complementarities”
which appeared at EC 2019 [CDGM ’19].
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items in order to maximize revenue from selling to a buyer who has a combinatorial
valuation function. The theme of the research has been simple vs. optimal, where
simple pricing schemes are shown to approximate the optimal (possibly randomized)
pricing scheme to within a universal constant multiplicative factor, independent of
the number of items.

One of the first such results was by Chawla et al. [2010], who consider the
setting with n unit-demand buyers, who each want at most one item, with values
drawn independently across n buyers andm items. They prove that selling the items
separately, posting the Myerson reserve price on each item, gives a 30-approximation
to the optimal revenue. They do this by defining a “copies” setting, where each
buyer i is represented by m single-dimensional agents, one for each item j that
buyer i might be interested in; further, only one of the m agents representing i

can be served, just as agent i can only receive one item in the unit-demand setting.
However, because the m agents for buyer i compete with each other in the copies
setting, whereas they cooperate in the unit-demand setting, the optimal revenue
from the copies setting is higher than the optimal revenue from the unit-demand
setting (but this is just intuition). Then, Chawla et al. use a prophet-inequality-like
argument to set prices in the unit-demand setting based on the optimal prices in the
copies setting, earning a constant-fraction of the optimal revenue from the copies
setting. By setting the prices to sell with half the ex-ante probability that they did
originally, it ensures that each item’s price is high enough, while each item is bought
frequently enough.

The second such result is for a single additive buyer with values drawn inde-
pendently across m items. Babaioff, Immorlica, Lucier, and Weinberg [2014] show
that the better of (1) selling separately, or posting the Myerson reserve price on
each item, and (2) selling the grand bundle, or posting the reserve pricing for the
distribution of the sum of all item values together, gives a 6-approximation to the op-
timal revenue in expectation. This is surprising, since neither selling separately nor
grand bundling on their own can guarantee a constant-factor approximation [Hart
and Nisan, 2017]. Babaioff et al. perform a “core-tail analysis” on the probability
distributions, essentially partitioning the event space into the “tail,” when the buyer
has an extremely high value for any item, and the “core,” the rest of the time. They
show that the optimal revenue is bounded by the revenue of the tail and the welfare
of the core. Then, they show that selling separately earns a constant fraction of the
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revenue of the tail. Finally, either selling separately also earns a constant fraction
of the welfare of the core, or the core must concentrate, and thus, selling the grand
bundle earns a constant fraction of the welfare of the core.

Next, Rubinstein and Weinberg [2015] extend an analogue of this result for a
single subadditive buyer, yielding a 338-approximation to the optimal revenue. They
relax the buyer’s valuation function to one that is additive between the set of items in
the tail and those in the core, creating a valuation function that is only larger. Then,
they show that approximate revenue monotonicity holds: if a distribution FH first order
stochastically dominates FL, then the optimal revenue from a buyer with valuations
drawn from FH is within a constant factor of that from a buyer with valuations
drawn from FL. (It is known that in such settings, strict revenue monotonicity does
not hold [Hart and Reny, 2012].) These pieces allowed the authors to finish off an
analysis similar to that of Babaioff et al..

Yao [2015] produced the first analogue of Babaioff et al. for multiple additive
bidders: the better of selling separately and a “two-part tariff” (an entry fee plus
item prices) yields a 57-approximation to the optimal revenue. He uses a technique
from the Lookahead Auction [Ronen, 2001] to ensure that only the highest bidder for
each item competes for it. The idea is to force each buyer i to pay for item j at least
the maximum value of any other bidder for item j, βij , and thus only the highest
bidder will be able to afford the item, ensuring that at most one buyer buys each item.
Then, as this is the baseline price, all of the distributions Fij are shifted down by
βij (with all negative values pushed up to zero) and the single-agent problem from
Babaioff et al. is solved. As the β’s are added back in as item prices, the “bundle”
pricing becomes an entry fee for the right to buy any items, and then buyer i can
take any remaining item at a price of βij , or the “selling separately” item prices are
added onto the β’s to form higher item prices.

The next extension in this line of work was was by Chawla and Miller [2016]
for multiple constrained-additive buyers: the better of selling separately and a
sequential two-part tariff yields a 133-approximation. Each buyer can be additive
subject to a publicly known matroid feasibility constraint, and these feasibility
constraints need not be identical among buyers. As a result, this is the first work to
handle a population comprised of both additive and unit-demand buyers (and other
constrained-additive buyers as well). Their approach is to solve for the optimal
ex-ante sale probabilities for each buyer and item, and then to solve the single-
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buyer problem subject to these ex-ante constraints. Then, they stitch together the
single-buyer solutions into a sequential mechanism.

Following this, Cai et al. [2016] put forth a Lagrangian duality framework that
managed to unify the approximation results of Chawla et al. [2010], Babaioff et al.
[2014], and Yao [2015], despite the differences in valuations and numbers of bidders.
The approach is to formulate the (primal) optimization problem of maximizing
expected revenue subject to incentive-compatibility (IC) and feasibility, and then
to take the partial Lagrangian by multiplying the IC constraints by Lagrangian
multipliers and moving them into the objective. Then, when the dual of this problem
has its variables set optimally, its objective is equal to that of the primal under strong
duality, and for any feasible variables the dual provides an upper bound. Cai et al.
observe that the dual only provides a finite upper bound when the payment variables
satisfy an equation that they interpret as a “flow constraint,” and thus, they interpret
the rest of the dual variables as forming a flow. They construct “canonical” dual
variables that are analogous to the single-dimensional optimal dual variables, and
call the resulting upper bound on the optimal revenue the benchmark. The benchmark
divides into several terms, which the authors then bound using the optimal revenue
in the copies setting or the core-tail analysis. They eventually bound these terms
with selling separately or grand bundling on shifted distributions, as in prior works.

Cai and Zhao [2017] use this same Lagrangian duality framework, extending the
techniques to provide a 268-approximation for multiple XOS buyers and anO(logm)-
approximation for multiple subadditive buyers. (Their approach also improves many
of the previous constants, such as the 338 from [Rubinstein and Weinberg, 2015] to
40.) As with [Rubinstein and Weinberg, 2015], they use a valuation relaxation tactic
in order to make the duality technology work and produce a viable upper bound on
the optimal revenue; this is the first benchmark produced for multiple subadditive
buyers with or without duality. The bounding of the benchmark is more involved in
this case, involving a double core-tail analysis and shifted distributions within the
core. While this first appears similar to the approaches in Yao [2015] and Chawla
and Miller [2016], this approach instead uses a prophet-inequality-like analysis in
combination with a concentration inequality for subadditive functions.
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5.1.2 Related Work: Complementary Valuations

All of the above simple-and-approximately-optimal results apply only in settings
where, at minimum, subadditivity holds. This assumes that a buyer’s valuations are
complement-free. However, there are many settings where a buyer derives some
extra value from owning a combination of items that is not present from owning
any item individually; that is, the items have complementarities. Further, in practice,
bundling is most attractive when the items are complementary to each other.

Complementarities in valuations were, for a long time, notoriously difficult not
only for revenue, but for welfare maximization in polynomial time as well1. While
complement-free valuations admit constant-factor polynomial time approximations
[Feige, 2009], or even allow VCG to be run in polynomial time, this is far from true
for single-minded valuations, for which the best approximation in polynomial time
is O(

√
m) for m items [Lehmann, O’Callaghan, and Shoham, 2002].

The first major progress was made by Abraham et al. [2012] who suggested a
restricted model of complements that came to be known as the positive-hypergraph-
k (ph-k) model. A hypergraph captures the valuations, where each vertex in the
hypergraph corresponds to an item, and the vertex i has weight equal to the buyer’s
value for item i alone, wi. Then, for any subset of items T with size at most k, there
may exist a weighted edge wT in the hypergraph corresponding to the value of some
activity that can be done with that collection of items. A buyer’s valuation for any
set of items S is then the sum over his value for the activities associated with all
subsets of items T ⊆ S, that is,

v(S) =
∑
i∈S

wi +
∑
T⊆S

wT .

For valuations from ph-k, Abraham et al. show that algorithmically, a k-approximation
to welfare can be given in polynomial time2. However, their truthful mechanism
only obtains an approximation factor of O(logkm).

Following this, Feige et al. [2015] defined a hierarchy of valuations that generalize
the ph-k model, as well as many other models of restricted complements. They
define the class of maximum-over-positive-hypergraph-k valuations (mph-k). That is,

1Welfare maximization disregarding running time is solved by the VCG mechanism.
2Abraham et al. use demand queries in their algorithm, but show that for the ph-k model,

demand queries can be implemented in polynomial time.
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there exist valuation functions {v`}`∈L such that v` ∈ph-k ∀` and v(S) = max`∈L v`(S).
First, they show the expressiveness of this hierarchy of valuations to capture existing
classes. In particular, mph-1 is equivalent to the class of xos valuations (maximum
over additive valuations), and contains submodular valuations. Every monotone
graphical function (as defined in [Conitzer, Sandholm, and Santi, 2005]) is contained
in mph-2. The authors show that the kth level of the xos hierarchy is contained in mph-
k, as is every function with supermodular degree k (as defined in [Feige and Izsak,
2013]), and clearly ph-k ⊂ mph-k. Interestingly, however, the converse directions do
not hold, demonstrating that the mph hierarchy is strictly more expressive. Further,
Feige et al. prove that, assuming access to demand oracles, they can obtain an
algorithmic (k + 1)-approximation to welfare in polynomial time for valuations in
mph-k, essentially matching the result of Abraham et al. [2012]. Finally, they show
that simultaneous first-price auctions guarantee a price of anarchy of at most 2k for
bidders with mph-k valuations, a much stronger result than Abraham et al. when
k � m, although simultaneous first-price auctions are of course not truthful. Their
results extend for Bayes-Nash and correlated equilibria, assuming the distributions
are independent across buyers.

The first work focusing on revenue maximization for complements is that of
Eden et al. [2017b], who aim to find a simple and approximately-optimal mechanism
for a single buyer with complementarities from the mph-k model. They assume
the buyer’s hyperedge types are drawn independently from known distributions.
Since the valuations are additive over hyperedges, the authors apply the [CDW ’16]
framework for additive valuations to the hyperedges. This implies that the better of
selling the hyperedges separately and grand bundling them is a good approximation
to the optimal revenue. Since grand bundling the hyperedges is the same as selling
the grand bundle of items, it remains to understand how to approximate selling
the hyperedges separately by selling items. First, they approximate the separate
hyperedges with separate disjoint hyperedges, losing a factor of d, and then they sell
a specific item for each hyperedge (which are now disjoint) and give the remain-
ing items away for free. The result is that the better of selling separately and the
grand bundle in the mph model gives an O(d)-approximation, where d is the largest
degree of any vertex, or the largest number of edges that any one item appears in.
Further, they prove that this factor d is necessary. In addition, they show that the
approximation would be exponential in the positive rank k, despite the fact that the
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welfare approximations from Abraham et al. and Feige et al. are in k.

5.1.3 Proportional Complementarities Model

The ph valuation model for the Microsoft Office example would have three values,
one each for Word, Excel, and the pair (Word, Excel), with each of them drawn
independently from a different distribution. While having the values for Word
and Excel be independent may be reasonable, that the value for the pair (Word,
Excel) be independent of the other two seems unrealistic. Similarly, for the cloud
services example, the ph model would have that the value for the pair (VM, SSD) be
independent of the value for the VM alone, which is once again unrealistic.

We introduce what we call a proportional complementarities model of valuations; a
special case of this model is proportional pairwise complementarties (ppc). We illustrate
this model through the examples we considered before.

Microsoft Office Example in the ppc model: We still have a value for each of Word
and Excel, say v1 and v2 respectively, that are independent of each other. Our model
differs in how the buyer values the combination of the two by assuming that the
additional value derived from having both items is due to a better utilization of
either item, and hence is proportional to (rather than independent of) the buyer’s
base valuation for Word and for Excel. This is captured in our model by having a
multiplier for the pair (Word, Excel), denoted by η1,2; say Excel always adds 23%

to the value of Word, then we would have η1,2 = 0.23. One could get an estimate
of this quantity by observing the frequency of activities between the two, such as
dragging Excel charts into Word. While not fully general, these proportionalities
make intuitive sense, because if a buyer values an item highly, he is likely to care
more about its complements too, as they enhance that item. The value for purchasing
both items in our model would then be

v1(1 + η1,2) + v2.

The other assumption we make is that while the seller doesn’t know the exact
values, he knows these proportions of complementarities. This is perhaps the least
accurate assumption in applications, because such values could reasonably vary
across individuals. However, in circumstances where the way products are used
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together is approximately fixed, such as dragging Excel charts into Word, it is not
unreasonable to assume that these values are known. This is especially true when
it comes to “digital goods,” where data about interactions between items can be
gathered, and the parameters can be estimated from this data, e.g. via estimating
cross-price elasticities.

Allowing the proportions (i.e., the ηs) to vary across individuals is an interesting
direction for future research. We present one possible approach via a common
generalization of our model and the ph model in Section 5.5. This generalization
further illustrate the similarities and the differences between the two models.

Proportional pairwise complementarities: We first define the ppc model. A single
seller offers m heterogeneous items for sale to a single buyer. (Equivalently, there
is a population of buyers, but no supply constraints on the seller, as is the case
with digital goods like Microsoft Office products.) We model the structure of
the complementarities among the items via the following parameters, which are
assumed to be known to the seller:3

ηij ∈ R+ ∀ i, j ∈ [m], i 6= j.

The parameter ηij captures how much having item j boosts the valuation that
the buyer derives from item i. The valuation of a buyer is determined by his type
t, which is a vector in Rm

+ , and is the private information of the buyer. The ith

coordinate of t is ti, which represents his base valuation for item i in the absence of
any other items. If the buyer also gets item j, then his valuation for item i is boosted
by an additional ηijti. From this, we get that for any bundle S ⊆ [m], the buyer’s
valuation for S is

v(t, S) :=
∑
i∈S

ηi(S)ti, where ηi(S) = 1 +
∑

j∈S\{i}

ηij.

Note that ηij need not be equal to ηji, and asymmetric boosts are only more general.
We make the Bayesian assumption that t is drawn from a product distribution Πi∈mFi.

3We use the notation [m] to indicate the set of first m natural numbers, {1, 2, . . . ,m}.



133

The distributions Fi for all i ∈ [m] (as well as the parameters ηij) are known to the
seller.

This more general asymmetric case corresponds to directed graphs (and hyper-
graphs). Thus we define the directed-positive-rank k of the graph to be the maximum
size of (number of items in) the source of a (hyper)edge. Thus, for the pairwise case,
k = 1.

The general case: The general class of valuations we consider is defined formally
in Section 5.2; we give an informal description here. First of all, we allow hyperedges,
instead of edges, i.e., each pair of item i and a disjoint set of items T forms a directed
hyperedge (T, i) and has a certain boost associated with it, denoted by ηiT : this is
the boost of having all items in T on item i. The valuation of a set S now includes
all possible boosts due to hyperedges (T, i) for T t {i} ⊆ S. We call this class of
valuations proportional positive hypergraphic (pph) valuations. The other generalization
is to allow the boost to be the maximum of the boost from multiple hypergraphs.
We call this class of valuations maximum of proportional positive hypergraphic (mpph)
valuations. We denote by k the directed-positive-rank and by d the maximum-degree
of the hypergraph. We tie this back to the cloud services example to show how such
a generalization is useful.

Cloud Services Example: Suppose that we had access to two types of VMs, VM1
and VM2, that are meant for different types of workloads. We can also purchase
additional disk drives (DDs) that allow us to run larger workloads. DDs come in
two technologies, fast and slow, say DD1 and DD2. Having either of the DDs can
boost the value for a VM, and having both of them boosts it even more but less than
the sum of the individual boosts. This could be modeled as follows. There are 4
items, 1 and 2 are the VMs, and 3 and 4 are the DDs. For each of i ∈ {1, 2} and
j ∈ {3, 4}, we have the boosts ηij as well as ηi{3,4}. Let x3 and x4 be binary variables
indicating whether items 3 and 4 were respectively purchased or not. The value
derived from item i for i ∈ {1, 2} depending on these choices is

ti · (1 + max{ηi3x3, ηi4x4, ηi{3,4}x3x4}).

Thus VM1 can get a boost of η13 from having DD1, or η14 from DD2, but if you have
both DD1 and DD2, the boost is η1{3,4} rather than η13 + η14.
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5.1.4 Pricing scheme

Almost all of the papers in this line of research consider the better of selling each
item separately and selling only the grand bundle. Pricing the grand bundle is
(conceptually) easy: set the monopoly price for the distribution of the buyer’s
value for the grand bundle, which can be computed from the given input. For
simple valuations such as additive valuations, setting item prices to sell separately
is also easy: set the monopoly reserve for each of them separately. In our model,
this completely ignores the boost in the valuation on an item from having other
items. Not surprisingly, this can be provably far from optimum when you have
complementarities; we therefore need a non-trivial way to price the items in this case.
We first illustrate our algorithm for finding these prices via a numerical example.

Numerical Example: Suppose, as shown on the left in Figure 5.1, that there are 4
items, numbered 1 through 4, and that we have non-zero ηs on the pairs (2, 1), (3, 2), (4, 3)

and (1, 4). Let all ηs be 1. Suppose t1 and t3 are distributed identically as follows: the
value is 2 w.p. 1

2
and 0 otherwise; let t2 and t4 be distributed identically as follows:

the value is 4 w.p. 1
2

and 0 otherwise. Each ti is independent of the others.
We denote the monopoly price and the monopoly revenue for item i alone by ri

and Ri respectively. For this example, we have the monopoly prices as r1 = r3 = 2

and r2 = r4 = 4; the revenues are R1 = R3 = 1 and R2 = R4 = 2. Setting the
monopoly prices for each item separately guarantees a revenue of

∑
iRi = 6. The

actual revenue would be higher, but in general it is difficult to get a better handle on
it than this bound.

Figure 5.1: Left: The 4-item example described above. Right: The directed graph
where the weight of a directed cut corresponds to a lower bound on the revenue of
the corresponding separate/free mechanism.
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Step 1: Construct a weighted directed graph. We construct a weighted directed
graph with 5 vertices, one for each item, and a source node s. The weight on the
edge (s, i) is Ri. The weight on the edge (i, j) is ηjiRj . This graph is shown on the
right in Figure 5.1.

Step 2: Find a max directed cut. We then find a cut in the graph that maximizes
the number of directed edges going from the “source” side to the “sink” side. From
the figure, it is easy to see that such a cut is given by the vertices s, 1 and 3 on the
source side, the rest on the sink side, and has weight 8.

Step 3: Set Prices. We set the prices for items on each side of the cut differently.

1. The items on the source side have a price of 0. This set of items, denoted by F ,
are “free”. In this case, items 1 and 3 are free.

2. For the items on the sink side, we multiply the monopoly price ri by ηi(F) (1
plus the boost i gets from all the items on the source side). Then items 2 and 4
thus have a price of 8 each.

The weight of the cut, 8, is a lower bound on the revenue of this pricing scheme.
Each of items 2 and 4 is bought at the price of 8 with probability 1

2
, giving a lower

bound on revenue of 8. In comparison, the best price for grand bundling is 12, which
is bought with probability 5

8
, giving a revenue of 15

2
, which is slightly lower. Both of

these are still higher than the revenue lower bound of 6 from setting separate prices
of ri each.

In general, we introduce a class of mechanisms which we call separate/free. Like
selling separately, every item is sold separately at some price, and the buyer may
take any set of items so long as he pays the sum of their individual prices. However,
we partition the items into “free items” F , where for each item i ∈ F , the individual
price of each such item is $0, and “priced items” F̄ = [m] \ F . Once the free set F is
determined, we use the knowledge that the buyer will take the free items to inflate
the monopoly prices of the priced items by the boost on the item from also getting
the free set (and only the free set).

Such mechanisms do capture a certain economic intuition that is seen in practice:
giving some items away for free in order to charge more for complementary items,
e.g., Google sells the Android OS for free since it is complementary to advertising
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revenue. One can also think of it as a certain form of bundling: there is no reason
to give away the free items unless the buyer purchases some priced item. This is
equivalent to bundling all the free items with any non-empty subset of paid items.
Going back to our cloud services example, such a pricing scheme could determine
that one of the two DDs should be free. We would then bundle that DD into the
VMs; such bundles are commonly observed in practice.

One difficulty in the above scheme is that in general, finding a max directed cut
in a graph is an NP-Hard problem. When restricted to polynomial time algorithms,
the best worst-case approximation guarantee we can show is by placing each item
independently into the free set with some probability α, which is determined by
min{d, k}. This is a little unsatisfactory since it doesn’t use the specific market pa-
rameters η at all. (However, they are used in setting the prices onceF is determined.)
An alternative is to use an approximation algorithm for the max directed cut prob-
lem, such as the Goemans-Williamson algorithm. The advantage of this method is
that it produces a free set that makes use of the structure of the ηs; unfortunately,
this does not improve the worst case approximation ratio. In fact, we show that no
algorithm can improve the approximation ratio when used in conjunction with our
current proof technique, but we conjecture that such an algorithm would be better
in practice.

5.1.5 Worst case approximation guarantee

Once again, we begin by illustrating our analysis using the numerical example
earlier. For the sake of analysis, we consider an instance of the pricing problem on
the same set of items, with additive valuations. The value distribution for item i in
this instance, denoted by F̂i, is just the original distribution Fi multiplied by ηi([m]),
the boost i can obtain from all of the items. In our example, F̂i for i = 1 and 3 is 4
w.p. 1

2
and 0 otherwise, and for i = 2 and 4 is 8 w.p. 1

2
and 0 otherwise.

We relate the revenue from selling separately and selling the grand bundle on
the given instance to the corresponding mechanisms for the additive instance. It
is easy to see that the bundle revenue remains the same in both instances, as the
complements buyer receives the boosts ηi([m]) on every item:

brev-ppc(F ) = brev-additive(F̂ ).
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As we computed earlier, a lower bound on selling separately with our pricing scheme
for the given instance is 8. Selling separately for the additive instance gives a revenue
of 12, which is 3/2 times 8. So for this example, we have that

srev-ppc(F ) ≥ 2

3
srev-additive(F̂ ).

More generally, srev-additive(F̂ ) is equal to the total the weight of all the edges in
the digraph that we construct. If you place each item on either side of the cut with
equal probability, then each edge is cut with probability 1

4
, which results in a factor

of 4 between the two srevs. This is indeed tight: consider a complete unweighted
digraph; any cut can only cut a 1

4

th fraction of edges.
We can now use a slight generalization of the result of Babaioff et al. [2014] to

bound the optimum revenue for the additive instance, denoted by Opt-additive(F̂ ),
in terms of srev and brev.

Opt-additive(F̂ ) ≤ 2 srev-additive(F̂ ) + 4 brev-additive(F̂ ).

Finally, we show that the optimum revenue for the additive instance is only higher.

Opt-ppc(F ) ≤ Opt-additive(F̂ ),

which gives an approximation ratio of 7 for this example, and 12 in general, working
through the inequalities above. Note that even for additive valuations, 5.2 is the
best known approximation ratio.

This last step may seem obvious, but it turns out to be quite tricky. One might
expect a direct argument, that given a mechanism M for the original instance, we
construct a mechanism M ′ for the additive instance, with a larger revenue. Such
approaches are inherently difficult, as evidenced by “Revenue non-monotonicity”
in Hart and Reny [2012]. We instead argue the upper bound by covering the dual of
the smaller setting with the dual of the larger setting, a novel use of the [CDW ’16]
Lagrangian duality framework.

We show the following approximation guarantee more generally.

Theorem 19 (Informal). The better of brev and the revenue from a mechanism of type sep-
arate/free is an O(min{d, k})-factor approximation to the optimal revenue for valuations
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in the class mpph. When k = 1, i.e., the boosts are the maximum over directed graphs, the
approximation factor is at most 12.

Recall that d is the maximum-degree of the hypergraph, and k is the directed-positive-rank
of the hypergraph.

We also show that our analysis of Theorem 19 is tight up to a constant factor
via the following lower bound. A crucial step in our analysis is to upper bound
the optimal revenue for mpph valuations by the optimal revenue for an instance of
additive valuations. Further, the actual revenue of a mechanism from a buyer with
proportional complements is extremely difficult to analyze. Instead, we analyze
a lower bound on the revenue we deem the “proxy revenue,” and we show that
with respect to our upper bound, no mechanism of the following type can give
an o(k)-approximation to the proxy revenue. The mechanisms we consider first
partition the set of items into bundles, designating one bundle as the free set. Each
of the other bundles is priced separately. The buyer always gets the free set for
free. Specifically, the price for a bundle is its monopoly reserve price inflated by
the boosts of only the other items in its own bundle and by the free set, and not
by anything else. The proxy revenue undercounts the revenue in the same way,
by assuming that the buyer’s boosted values match the way prices are set in these
mechanisms: only within bundles and from the free set. We elaborate on motivation
for using this proxy in Section 5.3.

5.2 Preliminaries

We now give the formal description of the mpph valuation model. There is a single
seller offering m heterogeneous items for sale to a single buyer. The following
parameters determine the structure of complementarities among items via boosts to
base valuations. There is a hypergraph with the set of items [m] as vertices whose
edges (T, i) correspond to a combination of items T and a disjoint item i to which
the combination gives a boost. Moreover, there could be several possible boosts out
of which only the highest is activated. For each item i ∈ [m], for each hyperedge
(T, i), and for each ` ∈ [K] for some integer K, we have the parameter η`iT ∈ R+.
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Figure 5.2: A directed graph representation of the η parameters.

The buyer’s valuation for any bundle S ⊆ [m] is

v(t, S) =
∑
i∈S

ηi(S)ti, where ηi(S) = 1 + max
`∈[K]

∑
T⊆S\{i}

η`iT .

We refer to the case where the boosts are simply the sum (i.e. K = 1) as additive
boosts, and the general case (K > 1) as XOS boosts. Note that ηi(S) always includes
the base valuation for item i (the +1) so it is not entirely comprised of boosts, but
we overload and call this term the boost anyway. Observe that the boosts are always
monotone in the set, that is, if `(S) ∈ argmax`∈[K]

∑
T⊆S\{i} η

`(S)
iT , then it always the

case that for all S ⊆ S ′,

ηi(S) = 1 +
∑

T⊆S\{i}

η
`(S)
iT ≤ 1 +

∑
T⊆S′\{i}

η
`(S)
iT ≤ 1 + max

`∈[K]

∑
T⊆S′\{i}

η`iT = ηi(S
′)

(5.1)
We assume that t is drawn from a product distribution F = Πm

i=1Fi. The distributions
Fi for all i ∈ [m] and the ηs are all known to the seller. However, the type realization
t is private information of the buyer.

Our approximation ratios depend on the parameters k and d of the underlying
hypergraph. The parameter k, the directed-positive-rank, is an upper bound on the
size of the set in any hyperedge, i.e., |T | ≤ k for each hyperedge (T, i). The parameter
d, the maximum-out-degree, is an upper bound on the number of hyperedges that
contain a particular vertex, i.e., for each i ∈ [m], |{ hyperedge (T, j) : i ∈ T}| ≤ d.
We suppress the dependence on the hypergraph in our notation, since it should
always be clear from the context. For the special case of pairwise complementarities
(ppc) we follow the notation in Section 5.1.3.
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5.2.1 Optimal Mechanisms in Various Settings

From the revelation principle, we can restrict our attention to direct revelation
mechanisms, where the buyer reports his type. A mechanism is therefore defined
by the allocation and the payment functions. We allow randomized allocation rules,
with the assumption that the buyer is risk neutral. Let xS(t) denote the probability
that the bundle S ⊆ [m] is allocated to the buyer of type t; let p(t) be his payment.
The incentive-compatibility (IC) constraints require that for each buyer type, the
buyer maximizes utility by reporting his true type.4 Among all IC mechanisms, the
optimal mechanism maximizes the expected revenue

Et[p(t)].

Notation: We use the following convention to denote the revenue from a particular
mechanism for a given class of valuations, for a particular distribution over types:

[Mechanism name]-[Valuation Class]([Distribution]).

For example, the optimal mechanism for ppc valuations with types drawn from F is
denoted by Opt-ppc(F ). We drop the distribution when it is clear from the context.
We also drop the valuation class when it is additive (additive) and it is clear from
the context: e.g., the revenue from selling the grand bundle for additive valuations
on types drawn from the distribution F is just brev.

5.3 A Constant-Factor Approximation via a Random
Free Set

We begin with the case of pairwise complementarities and show a 12-approximation
for this setting.

Recall that the two standard mechanisms considered in previous work are selling
the grand bundle and selling each item separately. Selling the grand bundle only
gets better with complements, since we are certain that the buyer will receive all
possible boosts, and we can price accordingly. It is selling the items separately that is

4We do not formally define IC constraints since we can bypass it due to Lemma 12, but our
mechanisms will be clearly IC.
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problematic. A conservative way to set the prices while selling separately is to ignore
the complementarities, and sell them as if they are just additive; this could clearly
be quite suboptimal. We can price an item more aggressively in order to capture
some of the boost from complementarities, but this will decrease its probability of
sale, which can further decrease the probabilities of sale for other items that receive
a boost from this item. The pricing must get the right tradeoff between capturing
more of the boost from complementarity while making sure that sufficient quantity
of items are sold in the first place in order for the boosts to accrue. Overall, it is
difficult to characterize the behavior of the buyer, which makes optimizing the prices
extremely challenging.

Our approach is to shift the focus away from optimizing prices. We do this
by giving some items away for free, and then just selling the remaining items
individually as if they are additive, but accounting the boost from the items that
are given for free. The free items make sure that sufficient boosts accrue; the priced
items extract the value thus generated. The problem now becomes one of choosing
the set of free items, but in fact we show that a random choice suffices. The analysis
compares the revenue to a seemingly crude upper bound, where every item receives
the fullest boost that an item could possibly receive—the boost on the item if the
buyer were to receive all of the items, that is, the grand bundle.

We now formally describe our mechanism separate/free. For each item i ∈ [m],
let r∗i be the monopoly reserve for the distribution Fi, i.e.,

r∗i = arg max
p∈R+

p · (1− Fi(p)) ,

and let Ri be the revenue of the monopoly reserve for the distribution Fi,

Ri := r∗i · (1− Fi(r∗i )) .

Mechanism separate/free(F) : Partition the items into “free items” F and “priced
items” F̄ = [m] r F . The price of a priced item i ∈ F̄ is

pi = ηi(F) · r∗i .

The buyer gets all of the items in F for free, that is, they are priced each at 0. We
denote by separate/free(F) the expected revenue from the mechanism with (poten-
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tially random) free set F , and we overload notation slightly to use separate/free =

maxF⊆[m] separate/free(F).

Theorem 20. The better of selling the grand bundle and Mechanism separate/free is a
12-approximation for ppc valuations:

Opt-ppc ≤ 12 max{brev-ppc, separate/free-ppc}.

5.3.1 Proof of Theorem 20

The proof of this theorem is largely along the lines of the analysis described in
Section 5.1.5. We first relate Opt-ppc to the optimal revenue for an instance of
additive valuations; where the buyer’s valuation for each item is inflated as if he
receives the boosts from owning every possible item in addition to this one, even
if he receives no additional items. Then, the buyer’s new (much larger) valuations
are additive. We refer to this setting as the fully-boosted additive setting, where we
call the values t multiplied by the full boosts as drawn from the distribution F̂ , even
though t is drawn identically as from F . We show that the revenue from this setting
is only larger than from the proportional complements setting.

Lemma 10.
Opt-ppc(F ) ≤ Opt-additive(F̂ ).

This is a very loose upper bound and intuitively it should be true: for every
type t, the buyer’s value for every set in the fully-boosted additive setting is only
larger than in the proportional complements setting. However, due to revenue non-
monotonicities, the proof requires more care, and is deferred to Subsection 5.3.2.

In Appendix B.1, we prove improve the analysis of the 6-approximation by
Babaioff et al. [2014] to allow a parameterization in the bound5. Then our Theorem 33
with a = 1 gives that

Opt-additive(F̂ ) ≤ 2 srev(F̂ ) + 4 brev(F̂ ).

It is easy to see that the revenue from grand bundling in the complements setting
on the original distribution is the same as the grand bundling in the fully-boosted

5This analysis also improves the 6-approximation to 5.382. The state of the art coefficient is 5.2
Ma and Simchi-Levi [2015], but our proof uses the [CDW ’16] framework and is more modular.
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additive setting, i.e., brev-ppc(F ) = brev-additive(F̂ ), as the buyer receives the full
boosts in both cases. It now remains to show that Mechanism separate/free on F is
a 4-approximation to srev(F̂ ), despite the fact that the prices in the fully-boosted
additive setting are each inflated by full boost of getting the grand bundle.

Lemma 11.
srev(F̂ ) ≤ 4 separate/free-ppc(F ).

Proof. First, we derive a lower bound on the revenue from Mechanism separate/free
for any partition of the items into free and priced. What revenue do we yield for
the partition (F , F̄)? Recall that for every item i ∈ F̄ , the price posted is ηi(F) · r∗i .
The probability that the buyer purchases item i is at least Pr[ti ≥ r∗i ] = 1− Fi(r∗i ),
because the buyer receives the boost ηi(F) from all the free items with certainty.
If the buyer also purchases other items, it will only increase the buyer’s value for
buying item i, so the probability of purchasing item i can only increase. Hence, the
revenue of mechanism separate/free under this particular partition (F , F̄) is at
least ∑

i∈F̄

ηi(F) · r∗i · (1− Fi(r∗i )) =
∑
i∈F̄

ηi(F)Ri.

Now we construct a graph and show that the revenue of Mechanism sepa-
rate/free under any partition (F , F̄) of the items is at least the weight of a cor-
responding directed cut in the following graph. Consider the graph with vertices
[m] corresponding to them items, where directed edge (j, i) has weightwj,i := ηij ·Ri,
where Ri is the optimal revenue for selling only item i. The graph also contains a
source node s, where for all items i ∈ [m], the edge (s, i) has weight ws,i = Ri. (This
will account for the coefficient 1 for the base valuation of the item.) The weight of
the directed cut from F + {s} to F̄ is precisely:

∑
i 6∈F

∑
j∈F+{s}

wj,i =
∑
i∈F̄

(
1 +

∑
j∈F

ηij

)
Ri =

∑
i∈F̄

ηi(F)Ri.

Hence, for any partition of free and priced items (F , F̄), the weight of the directed
cut from F + {s} to F̄ gives a lower bound on the revenue yielded by Mechanism
separate/free for this partition.

We construct our free set by placing each item independently and uniformly at
random into F or F̄ . The expected weight of the corresponding random cut from
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F + {s} to F̄ is at least 1
4

∑
i∈[m] ηi([m]) ·Ri = 1

4
srevη[m]◦t. To see this, observe that for

every pair of items (j, i), the cut gets the weight of ηijRi from this edge whenever
j ∈ F and i 6∈ F , which occurs with probability 1

4
. The cut also gets a weight of Ri

whenever i ∈ F̄ , which happens with probability 1
2
.

Theorem 20 now follows from Lemmas 10 and 11, and Theorem 33 with a = 1:

Opt-ppc(F ) ≤ Opt-additive(F̂ )

≤ 2 srev(F̂ ) + 4 brev(F̂ )

≤ 8 separate/free-ppc(F ) + 4 brev-ppc(F ).

5.3.2 Proof of the Benchmark

We now prove Lemma 10: that the optimal revenue from the proportional comple-
ments setting is bounded by the optimal revenue from the fully-boosted additive
setting. Again, while this is intuitive, revenue non-monotonicities make it unclear
how to execute a direct proof. Instead, we use the machinery from the Lagrangian
duality framework of Cai et al. [2016] to give a “dual-covering” argument. While
the argument is simple and easy-to-see for those familiar with the machinery, the
machinery itself is not easy.

First, we formulate the (primal) optimization problem: maximize revenue subject
to incentive-compatibility, individual rationality, and feasibility. We have Lagrangian
dual variables, denoted by λ, corresponding to each IC constraint, i.e., corresponding
to each pair of types (t, t′). Then the Lagrangian duality framework states that, via
strong duality, optimal revenue is equal to the optimal dual minimization problem,
and upper bounded by any feasible dual.

Of the vast array of works that use the Lagrangian duality framework to achieve
an upper bound for approximation [Cai et al., 2016; Cai and Zhao, 2017; Brustle, Cai,
Wu, and Zhao, 2017; Eden et al., 2017b; Eden, Feldman, Friedler, Talgam-Cohen, and
Weinberg, 2017a; Fu, Liaw, Lu, and Tang, 2017; Liu and Psomas, 2017], the standard
approach used by almost all of them is to select dual variables for the setting at hand
that naturally split the upper bound into terms that can be bounded by a few simple
mechanisms. Then, the bulk of the work remains in bounding the unique terms with
the correct mechanisms. Here, however, it is not even clear how to chose a set of dual
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variables that induces a good upper bound due the complementarities across items.
We take a different path. We first create a new proxy additive setting, where buyers’
valuations are fully-boosted. We then argue that the optimal revenue in our setting
is upper bounded by the optimal revenue in the boosted additive setting. As the
buyers’ valuations in the boosted setting “dominate” the original buyers’ valuations,
the claim is intuitively true. However, due to revenue non-monotonicities, this
intuition does not directly translate to a proof. We rely on duality to prove the claim.
We show that the optimal dual in the original setting is at most the optimal dual in
the fully-boosted additive setting, which by strong duality, is equal to the optimal
revenue. This step is the only place we use duality and the rest of the analysis all
happen in the primal/mechanism space.

We use φi(t) := ti − 1
f(t)

∑
t′(t
′
i − ti)λ(t′, t) as the “virtual value function” given

by λ. Let f(t) denote the probability that the type t is realized. (We assume discrete
distributions for simplicity of notation.) We denote the set of feasible allocations by
P—this is just the set that allocates at most one unit of each good. The following
lemma is a direct application of Theorem 4.4 of Cai and Zhao [2017] to our setting
and gives the optimal revenue in terms of these dual variables.

Lemma 12.

Opt-mpph = min
λ≥0

max
x∈P

∑
i

∑
t

f(t)φi(t)
∑
S:i∈S

xS(t)ηi(S).

This lemma allows us to move back and forth between the revenue in the primal
space and a bound in the dual space.

Proof. Theorem 4.4 of Cai and Zhao [2017] states that the optimal revenue from a
buyer with type t ∈ T and any valuation v(t, S) for the set S is as follows, where
x(t, S) is the primal variable for the probability that the buyer receives exactly set S
when he reports type t:

Opt-v(·, ·) = min
λ≥0

max
x∈P

∑
t

f(t)Φ(t, S)xS(t)

where
Φ(t, S) = v(t, S)− 1

f(t)

∑
t′∈T

λ(t′, t)(v(t′, S)− v(t, S)).
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In our setting, we have that v(t, S) =
∑

i∈S ηi(S)ti. Thus

Φ(t, S) = v(t, S)− 1

f(t)

∑
t′∈T

λ(t′, t)(v(t′, S)− v(t, S))

=
∑
i∈S

ηi(S)ti −
1

f(t)

∑
t′∈T

λ(t′, t)

(∑
i∈S

ηi(S)t′i −
∑
i∈S

ηi(S)ti

)

=
∑
i∈S

ηi(S)

(
ti −

1

f(t)

∑
t′∈T

λ(t′, t) (t′i − ti)

)
=
∑
i∈S

ηi(S)φi(t)

and the above claim holds.6 Note that this also applies to the additive setting, where
for all i, ηij = 0 for all j and ηi(S) = 1.

We first relate Opt-ppc to the optimal revenue for an instance of additive valua-
tions; in essence we just multiply the value ti by ηi([m]). We set up some notation
first. Define η[m] to be the vector whose ith coordinate is (η[m])i = ηi([m]), and let
η[m] ◦ t be the Hadamard product of the vector η[m] and the vector t. Let F̂ be the
distribution where η[m]◦t is drawn identically to t in F = ΠiFi, i.e., f̂

(
η[m] ◦ t

)
= f(t).

We refer to this setting as the fully-boosted additive setting.

Proof of Lemma 10. For each i and allocation rule x, by the monotonicity in (5.1), the
boost from [m] is larger than that from any set S, i.e., ηi(S) ≤ ηi([m]). Thus, we have
that ∑

S:i∈S

xS(t)ηi(S) ≤ ηi([m])
∑
S:i∈S

xS(t) = ηi([m])πi(t), (5.2)

where we define πi(t) :=
∑

S:i∈S xS(t) to be the probability that item i is allocated to
a buyer of type t. We now have the following sequence of equalities and inequalities.
The first line uses Lemma 12 to move to the dual space. We would like to replace
ηi(S) by ηi([m]) everywhere (using (5.2)), but this is not possible since the virtual
value function may be negative on some types. Lines 2 and 3 do this by using only
non-negative virtual valuations as an upper bound. We use z+ to denote max{z, 0}
for any real number z. In line 4 we can bring back the original (possibly negative)
virtual value function because in order to maximize this quantity, the optimal π

6The theorem from Cai and Zhao [2017] also holds for multiple buyers, as does a restatement of
Lemma 12; we only state it for a single buyer for simplicity.
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must set πi(t) = 0 when φi(t) < 0. Line 5 then moves to the dual space for the
fully-boosted additive setting, by suitably defining the dual variables there. (The
exact duals are defined below.) Line 6 uses Lemma 12 once again to come back to
the primal, Opt-additive(F̂ ).

Opt-ppc(F ) = min
λ≥0

max
x∈P

∑
i

∑
t

f(t)φi(t)
∑
S:i∈S

xS(t)ηi(S) by Lemma 12

≤ min
λ≥0

max
x∈P

∑
i

∑
t

f(t) (φi(t))
+
∑
S:i∈S

xS(t)ηi(S)

≤ min
λ≥0

max
π

∑
i

∑
t

f(t) (φi(t))
+ · ηi([m])πi(t) by (5.2)

= min
λ≥0

max
π

∑
i

∑
t

f(t)φi(t)ηi([m])πi(t)

= min
λ≥0

max
π

∑
i

∑
η[m]◦t

f̂
(
η[m] ◦ t

)
φ̂i
(
η[m] ◦ t

)
πi
(
η[m] ◦ t

)
by (5.3)

= Opt-additive(F̂ ) by Lemma 12.

The equality in line 5 is true because if we set the dual variable λ̂(η[m]◦t′, η[m]◦t) =

λ(t′, t) in the fully-boosted additive setting, λ̂ still corresponds to a feasible dual
variable7. Therefore, it induces the following virtual value function:

φ̂i
(
η[m] ◦ t

)
= ηi([m]) ◦ ti −

1

f̂
(
η[m] ◦ t

) ∑
η[m]◦t′

(ηi([m])t′i − ηi([m])ti) λ̂
(
η[m] ◦ t′, η[m] ◦ t

)
= ηi([m])ti −

1

f(t)

∑
t′

ηi([m]) (t′i − ti)λ(t′, t)

= ηi([m])φi(t). (5.3)

5.3.3 XOS Complementarities

For simplicity, our analysis is written for additive boosts. However, the extension to
XOS boosts is fairly straight-forward. As shown in (5.1), XOS boosts are also mono-
tone, so the upper bound from using ηi([m]) holds. We modify our graph construc-
tion from the proof of Lemma 11 as follows. Define `∗i ∈ argmax`∈[K]

∑
j∈[m]r{i} η

`
ij ;

7For readers familiar with CDW ’16, λ̂ still corresponds to a flow.
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then ηi([m]) = 1 +
∑

j∈[m]r{i} η
`∗i
ij . Then in the XOS analysis, the directed edge (j, i)

has weight wj,i := η
`∗i
ij ·Ri. A cut from {s} ∪ F to F̄ will have thus have weight

∑
i 6∈F

∑
j∈F+{s}

wj,i =
∑
i∈F̄

(
1 +

∑
j∈F

η
`∗i
ij

)
Ri ≤

∑
i∈F̄

ηi(F)Ri.

That is, the weight of the cut is a lower bound on the revenue of the mechanism
with free set F and items in F̄ priced accordingly, using the actual ηi(F)’s. Since
a uniformly random F guarantees a cut of weight 1

4

∑
i ηi([m]) ·Ri in expectation,

then the expected revenue is again at least as high.
Similarly, in Lemmas 14 and 15, the same modification of using wT,i := η

`∗i
iT on

edges (T, i) will guarantee that the weight of any cut is again a lower bound on the
corresponding separate/free revenue, so our random cut constructions give the
same guarantees under XOS boosts as well.

Finally, it is not hard to see that even when the boosts are XOS functions, the
revenue of selling the grand bundle is still the same as the fully-boosted additive
brev(F̂ ).

Theorem 21. The better of selling the grand bundle and Mechanism separate/free is a
12-approximation to the optimal revenue for XOS complementarities.

5.4 Extension to MPPH

In this section, we show how to extend the mechanism and the analysis to the more
general proportional positive hypergraphic (pph) valuation class. Recall that ηiT
may be defined for any subset T ∈ [m]r {i}, and that ηi(S) = 1 +

∑
T⊆S\{i} ηiT . Also

recall that k is the directed-positive-rank of the hypergraph, and d is the maximum-
out-degree. The extensions to the boosts being a maximum over many hypergraphs
(mpph) is covered in our analysis in Section 5.3.3.

The distribution for the fully-boosted additive setting F̂ is defined as before,
except with ηi([m]) defined according to the pph valuations.

Lemma 13 states that the fully-boosted additive setting is again a crude upper
bound on revenue; it is the analog of Lemma 10 for pph valuations and can be proven
similarly.
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Lemma 13.
Opt-pph(F ) ≤ Opt-additive(F̂ ).

Next, we prove an analog of Lemma 11 which shows that we can obtain a 4k-
approximation to srev(F̂ ).

Lemma 14.
srev(F̂ ) ≤ 4k separate/free-pph(F ).

Proof. We use a random construction of the free set, and we show that the expected
revenue of our mechanism is at least a 1/4k-fraction of srev(F̂ ). Each item indepen-
dently is free (inF ) with probability (1− 1

2k
), and otherwise it is priced. By definition

of the directed-positive-rank, for every given ηiT , |T | ≤ k. Then for any such T , all
items in T appear simultaneously in F with probability (1− 1

2k
)|T | ≥ (1− 1/2

k
)k ≥ 1

2
.

In addition, every item i ∈ F̄ with probability 1
2k

.
Consider the graph construction where a directed edge (T, i) has weight wT,i :=

ηiT · Ri and we have an edge (s, i) for every item i with weight ws,i := Ri. Every
edge is cut from {s} ∪ F to F̄ with probability ≥ 1

2
· 1

2k
= 1

4k
. The expected weight

of the cut from {s} ∪ F to F̄ is then ≥ 1
4k

∑
i ηi([m]) ·Ri = 1

4k
· srev(F̂ ).

Again, as in the proof of Lemma 11, we observe that the expected revenue of
Mechanism separate/free with partition (F , F̄) achieves at least as much revenue
as the directed cut from {s} + F to F̄ , and thus the mechanism obtains the 1

4k
-

approximation.

We prove in the next Lemma that there is a different way to choose the free set
to obtain a 4d-approximation to srev(F̂ ).

Lemma 15.
srev(F̂ ) ≤ 4d separate/free-pph(F ).

Proof. When the hypergraph has maximum-out-degree d, that is, d is the largest
number of edges directed out of any item, a slightly different random construction
of the free set gives a 4d-approximation to srev(F̂ ). For each hyperedge (T, i), with
probability 1

2d
, we place all items j ∈ T into the free set. We run this process for every

hyperedge (in some arbitrary order). If, after this process, an item j is not assigned
to the free set, then item j is priced (placed into F̄ ). For any item i, the item is priced
when none of the (at most d) edges that are directed from a set which contains i are
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placed into the free set, which occurs with probability at least (1 − 1
2d

)d ≥ 1
2
. The

probability of i being free is of course at least 1
2d

.
Then any edge (T, i) crosses the cut from {s}+ F to F̄ with probability at least

1
2d
· 1

2
= 1

4d
. Then by the same analysis as in the proof of Lemma 14, the expected

weight of the cut from {s}+F to F̄ is at least 1
4d

∑
i ηi([m]) ·Ri = 1

4d
· srev(F̂ ), which

is again a lower bound on the expected revenue of Mechanism separate/free with
partition (F , F̄).

Together, this gives

Opt-pph ≤ Opt(F̂ ) ≤ 2 srev(F̂ ) + 4 brev(F̂ ) Lemma 13 and Theorem 33

≤ 8 min{k, d} separate/free-pph + 4 brev-pph. Lemmas 14 and 15

Theorem 22. The better of selling the grand bundle and Mechanism separate/free for pph
valuations, with directed-positive-rank k and maximum-out-degree d, is an (8 min{d, k}+4)-
approximation to the optimal revenue.

The analysis in Section 5.3.3 generalizes the guarantees to mpph (from additive
to XOS boosts).

5.4.1 Lower Bound of O
(

1
kOPT(F̂ )

)
In our analysis, we make two relaxations. First, we relax our benchmark from
Opt-mpph to the upper bound of Opt(F̂ ). Second, we lower bound the revenue of
our separate/free mechanism by undercounting the probabilities of sale.

It is extremely difficult to reason about the probability that a buyer will be
interested in buying an item (or a set of items): her value may only be high enough
if she buys multiple bundles simultaneously, or she may purchase a bundle even
though her value for it is low because it improves her value for other bundles.
Instead, we undercount this probability in the following manner: when the buyer
is deciding whether to take a priced bundle of items B, we suppose that she only
counts the boosts between items within that bundle B and the boost from the free
items in F . We refer to this lower bound on revenue as the proxy revenue.

In this section, we show that with respect to these two relaxations, for a reasonable
class of simple mechanisms which includes ours, there exists an instance such that
the proxy revenue of every mechanism from the class is a factor of k off from Opt(F̂ ).
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Note that this does not imply that the proxy revenue of these mechanisms is far from
Opt-mpph, as we do not know how far Opt-mpph is from the benchmark of Opt(F̂ );
we also do not know how far the proxy revenue may be from the actual revenue.

Definition 14. A mechanism is from the class of Bundle Pricing Mechanisms B if it
computes prices as follows. The mechanism determines a partition of items into y
priced bundles of size n1, . . . , ny and one free set F . The jth bundle Bj is priced at
its monopoly reserve when counting (1) the boosts of the complementarities within
the bundle and (2) the boosts to the items in Bj from the free set F .

Theorem 23. Among Bundle Pricing Mechanisms B, no mechanism has proxy revenue
better than O

(
1
k

Opt(F̂ )
)

, and separate/free with a random free set F achieves this.

Proof. Consider the following instance. There are m items, and the buyer’s type for
item i ∈ [m] is

ti =

2i w.p. 2−i

0 otherwise.

For every size-k set T ∈
(

[m]
[k]

)
, for all items i 6∈ T , we have that ηiT = c := m

2(m−1
k )

.
That is, the market structure is the directed complete graph of hyperedges of size
exactly k. Any other hyperedge (T, i) where |T | 6= k has weight ηiT = 0. In total,
there are

(
m−1
k

)
edges of weight m

2(m−1
k )

into each item i, thus ηi([m]) = 1 + m
2

.
Under these valuations and market parameters, for the random free set construc-

tion described in the previous section (pricing any item with probability 1
2k

), we get
proxy revenue at least (1 + m

2
)m 1

4k
= m+m2/2

4k
.

We now show that the proxy revenue of every mechanism from B is O(m
2

k
), and

is thus no better than a constant factor times the proxy revenue of our mechanism.

Lemma 16. In the above construction, for every bundle of n items and a free set F of size
|F| = w items, the proxy revenue of the bundle is O

(((
n
k

)
+
(
w
k

))
· c
)
, where c = m

2(m−1
k )

.

Proof. We count the boosts that are incorporated into the proxy revenue for any item:
from within its bundle, and from the free set. First, for any item iwithin some bundle
B of sizen, the boosts from within the bundle are exactly

∑
T⊆Br{i}:|T |=k ηiT =

(
n−1
k

)
·c.

Then, the boosts that i gets from the free set are
∑

T⊆F :|T |=k ηiT =
(
w
k

)
· c. Together,
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i’s boosts accounted for in the proxy revenue are

η(B + F) := ηi(B + F) =

((
n− 1

k

)
+

(
w

k

))
· c.

We now show that for any bundle B of n items, the proxy revenue is at most
4 · η(B+F). According to the way we undercount probability for the proxy revenue,
for any `, the (undercounted) probability that the buyer’s value for bundle B is
greater than η(B + F)2` is at most the probability that he has value at least 2` in
base valuations, which is

∑m
i=` 2−i ≤ 1/2`−1.

Therefore, for any price for this bundle pB ∈ [η(B + F)2`, η(B + F)2(`+1)], the
expected proxy revenue for this bundle is no more than η(B + F)2(`+1) · 2−(`−1) =

4 · η(B + F).

1. The proxy revenue for selling separately ism. This is the proxy revenue earned
from optimally selling the m items separately, without giving any item out for
free. Posting a price of 2i for each item i earns expected proxy revenue 1 for
each of the m items.

2. brev ≤ 2m, by the proof of Lemma 16 when n = m and w = 0.

3. For any mechanismM ∈ B, the proxy revenue ofM-pph is no more than
O(m2/k). Consider the mechanism that offers a free set of size w to the buyer,
and then splits the remainingm−w items into y bundles where the jth bundle
is of size nj . According to Lemma 16, the mechanism’s proxy revenue is

O

(((
w

k

)
· y +

y∑
j=1

(
nj
k

))
· c

)
.

Clearly,
∑y

j=1

(
nj

k

)
≤
(∑y

j=1 nj

k

)
=
(
m−w
k

)
. By definition of c, O

((
m−w
k

)
· c
)

=

O(m).

Next, we bound
(
w
k

)
· y by wk

k!
· (m− w). Then, by the AM-GM inequality,

wk·(m−w) =
(w
k

)k
·(m−w)·kk ≤

(
m

k + 1

)k+1

·kk = O

(
m(k+1)

k + 1

)
.
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Combining everything, we have that

c ·
(
w

k

)
· y ≤ O

(
c

k!
· m

(k+1)

k + 1

)
= O

(
m2

k

)
,

where again the definition of c kills the factor of mk

k!
.

5.5 A common generalization

As observed earlier, our model captures scenarios where the additional value from a
combination of items depends on the base values for the items, whereas the common
ph model captures scenarios where this is independent. We now present a common
generalization of these two models. Consider the hypergraphic representation of a
valuation function, i.e., where the valuation function is represented by

v(S) =
∑
T⊆S

vT

for some values vT ; the T for which vT > 0 are the hyperedges of the underlying
hypergraph. Our model can be thought of as a special case where vT is a linear
combination of the base values for the items in T :

vT =
∑
i∈T

ηiTvi.

More generally, one could have an arbitrary linear transformation from the type
space to the hypergraphic representation: let t = (t1, t2, . . . , td) be the type, for some
dimension d, and

vT =
∑
i∈[d]

ηiT ti.

An interpretation of this model is that, for each i ∈ [d], ti represents the buyer’s value
for some activity, and ηiT is the additional boost for that activity made possible by
the buyer owning the combination of items in T . Assume that each ti is independent
of the others. This generalizes the ph model with independent vT s: each hyperedge
corresponds to a different activity, and is boosted only by itself. The model can be
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further extended to XOS boosts, i.e., a maximum of many linear combinations (as in
mph). We now give an example where such a model is useful.

Example 3. Consider a computing device such as a tablet, which has multiple uses,
such as browsing the web, and taking notes. A buyer’s valuation for such a device can
be modeled as a linear combination of his value for each of the activities it enables.
Now consider an accessory such as a stylus. This makes some of the activities
faster, such as taking notes. The additional value it provides can be modeled as a
linear combination of values for the corresponding activities. Similarly a note-taking
app also makes the note-taking activity more valuable. Moreover, it could be that
a combination of a stylus and a compatible app has further added boost to the
valuation for that activity.

This perspective is similar in spirit to the ‘subadditive with independent items’
model of Rubinstein and Weinberg [2015]. The types (t1, t2, . . . , tm) are drawn from
a product distribution of m spaces, one for each item; the space corresponding to
each item itself can be multi-dimensional. The valuation function for a set v(S) can
be an arbitrary function that depends only on ti for i ∈ S, subject to subadditivity.

What is the point of a model even more general than ph when we have seemingly
strong lower bounds for ph? These lower bounds are for max{srev, brev}, which
are (by now) the standard pricing mechanisms for which upper bounds have been
shown. While it makes sense to consider the simplest of the pricing schemes when it
comes to upper bounds, lower bounds against such utterly simple pricing schemes
are much less compelling. When it comes to items that are complements, where
such pricing schemes may not be the most natural, such lower bounds are more of
an indication that we need to study alternate pricing schemes, rather than a sign of
hopelessness. A take away from our results is that suitably simple pricing schemes
could give constant factor approximations for reasonably general valuation models
with complements. It is too early to discard the hope for such results for ph and
other generalizations.
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6 Combinatorial Auctions with
Interdependent Valuations
6.1 Introduction

Maximizing social welfare with private valuations is a solved problem. The classical
Vickrey-Clarke-Grove (VCG) family of mechanisms [Vickrey, 1961; Clarke, 1971;
Groves, 1973], of which the Vickrey second-price auction is a special case, are
dominant strategy incentive-compatible and guarantee optimal social welfare in
general social choice settings.

In this chapter, we consider combinatorial auctions, where each agent has a value
for every subset of items, and the goal is to maximize the social welfare, namely
the sum of agent valuations for their assigned bundles. As a special case of general
social choice settings, the VCG mechanism solves this problem optimally, as long as
the values are independent.

There are many settings, however, in which the independence of values is not
realistic. If the item being sold has money-making potential or is likely to be resold,
the values different agents have may be correlated, or perhaps even common. A
classic example is an auction for the right to drill for oil in a certain location [Wilson,
1969]. Importantly, in such settings, agents may have different information about
what that value actually is. For example, the value of an oil lease depends on how
much oil there actually is, and the different agents may have access to different
assessments about this. Consequently, an agent might change her own estimate of
the value of the oil lease given access to the information another agent has. Similarly,
if an agent had access to the results of a house inspection performed by a different
agent, that might change her own estimate of the value of a house that is for sale.

The following model due to Milgrom and Weber [1982], described here for single-
item auctions, has become standard for auction design in such settings. These are
known as interdependent value settings (IDV) 1 and are defined as follows:

This chapter is based on joint work with Alon Eden, Michal Feldman, Amos Fiat, and Anna
Karlin in a paper titled “Combinatorial Auctions with Interdependent Valuations: SOS to the Rescue”
which appeared at EC 2019 [EFFGK ’19] and was awarded Best Paper with a Student Lead Author.

1See also [Krishna, 2009; Milgrom, 2004].
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• Each agent ihas a real-valued, private signal si. The set of signals s = (s1, s2, . . . , sn)

may be drawn from a (possibly) correlated distribution.

The signals summarize the information available to the agents about the item.
For example, when the item to be sold is a house, the signal could capture the
results of an inspection and privately collected information about the school
district. In the setting of oil drilling rights, the signals could be information
that each companies’ engineers have about the site based on geologic surveys,
etc.

• The value of the item to agent i is a function vi(s) of the signals (or information)
of all agents.

A typical example is when vi(s) = si + β
∑

j 6=i sj , for some β ≤ 1. This type
of valuation function captures settings where an agent’s value depends both
on how much he likes the item (si) and on the resale value which is naturally
estimated in terms of how much other agents like the item (

∑
j 6=i sj) [Myerson,

1981].

In the economics literature, interdependent settings have been studied for about
50 years (with far too many papers to list; for an overview, see [Krishna, 2009]).
Within the theoretical computer science community, interdependent (and correlated)
settings have received less attention (see Section 6.1.4 for further discussion and
references).

6.1.1 Maximizing Social Welfare

Consider the goal of maximizing social welfare in interdependent settings. Here,
a direct revelation mechanism consists of each agent i reporting a bid for their
private signal si, and the auctioneer determining the allocation and payments. (It is
assumed that the auctioneer knows the form of the valuation functions vi(·).)

In interdependent settings, it is not possible2 to design dominant-strategy incentive-
compatible auctions, since an agent’s value depends on all of the signals, so if, say,
agent i misreports his signal, then agent j might win at a price above her value if
she reports truthfully. The next strongest equilibrium notion one could hope for is

2Except perhaps in degenerate situations.
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to maximize efficiency in ex-post equilibrium: bidding truthfully is an ex-post equi-
librium if an agent does not regret having bid truthfully, given that other agents bid
truthfully. In other words, bidding truthfully is a Nash equilibrium for every signal
profile.3 A strong impossibility result due to Jehiel and Moldovanu [2001] shows
that with multi-dimensional signals, maximizing welfare is generically impossible
even in Bayes-Nash equilibrium.4

For single-item auctions with single-dimensional signals, a characterization of
ex-post incentive compatibility in the IDV setting is known, analogous to Myerson’s
characterization for the independent private values model (e.g., Roughgarden and
Talgam-Cohen [2016]). The characterization says that there are payments that yield
an ex-post incentive-compatible mechanism if and only if the corresponding alloca-
tion rule is monotone in each agent’s signal, when all other signals are held fixed.
Maximizing efficiency in ex-post equilibrium is also provably impossible unless the
valuation functions vi(s) satisfy a technical condition known as the single-crossing
condition [Milgrom and Weber, 1982; d’Aspremont and Gérard-Varet, 1982; Maskin,
1992; Ausubel et al., 1999; Dasgupta and Maskin, 2000; Athey, 2001; Bergemann, Shi,
and Välimäki, 2009; Chawla, Fu, and Karlin, 2014; Che, Kim, and Kojima, 2015; Li,
2016; Roughgarden and Talgam-Cohen, 2016]. I.e., the influence of agent i’s signal
on his own value is at least as high as its influence on other agents’ values, when all
other signals s−i are held fixed 5. When the single-crossing condition holds, there
is a generalization of VCG that maximizes efficiency in ex-post equilibrium. (See
[Crémer and McLean, 1985, 1988; Krishna, 2009].)

Unfortunately, the single crossing condition does not generally suffice to obtain
optimal social welfare in settings beyond that of a single item auction with single-
dimensional signals. It is insufficient in fairly simple settings, such as two-item, two-
bidder auctions with unit-demand valuations (see Section C.1), or single-parameter
settings with downward-closed feasibility constraints (see Section C.2).

Moreover, there are many relevant single-item settings where the single-crossing
3Note that, of course, every ex-post equilibrium is a Bayes-Nash incentive compatible equilibrium,

but not necessarily vice versa, and therefore ex-post equilibria are much more robust: they do not
depend on knowledge of the priors and bidders need not think about how other bidders might be
bidding. This increases our confidence that an ex-post equilibrium is likely to be reached.

4For more details on this and other related work, see Section 6.1.4.
5This implies that given signals s−i, if agent i has the highest value when si = s∗, then agent i

continues to have the highest value for si > s∗. This is precisely the monotonicity needed for ex-post
incentive compatibility.
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condition does not hold. For example, suppose that the signals indicate demand
for a product being auctioned, agents represent firms, and one firm has a stronger
signal about demand, but is in a weaker position to take advantage of that demand.
A setting like this could yield valuations that do not satisfy the single crossing
condition. For a concrete example, see Example 2 in Section 1.4.

6.1.2 Research Problems

This chapter addresses the following two issues related to social welfare maximiza-
tion in the interdependent values model:

1. To what extent can the optimal social welfare be approximated in interdepen-
dent settings that do not satisfy the single-crossing condition?

2. How far beyond the single item, single-dimensional setting can we go?

Given the impossibility result of Jehiel and Moldovanu [2001], we ask if it is
possible to approximately maximize social welfare in combinatorial auctions with
interdependent values?

The first question was recently considered by Eden et al. [2018] who gave two
examples pointing out the difficulty of approximating social welfare without single
crossing. Example 4 shows that even with two bidders and one signal, there are
valuation functions for which no deterministic auction can achieve any bounded
approximation ratio to optimal social welfare.

Example 4 (No bound for deterministic auctions Eden et al. [2018]). A single item
is for sale. There are two players, A and B, only A has a signal sA ∈ {0, 1}. The
valuations are

vA(0) = 1 vB(0) = 0

vA(1) = 2 vB(1) = H,

where H is an arbitrary large number. If A doesn’t win when sA = 0, then the
approximation ratio is infinite. On the other hand, if A does win when sA = 0, then
by monotonicity, A must also win at sA = 1, yielding a 2/H fraction of the optimal
social welfare.
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The next example can be used to show that there are valuation functions for
which no randomized auction performs better (in the worst case) than allocating
to a random bidder (i.e., a factor n approximation to social welfare), even if a prior
over the signals is known.

Example 5 (n lower bound for randomized auctions Eden et al. [2018]). There are n
bidders 1, . . . , n that compete over a single item. For every agent i, si ∈ {0, 1}, and

vi(s) =
∏
j 6=i

sj + ε · si for ε→ 0;

that is, agent i’s value is high if and only if all other agents’ signals are high si-
multaneously. When all signals are 1, then in any feasible allocation, there must
be an agent i which is allocated with probability of at most 1/n. By monotonicity,
this means that the probability this agent is allocated when the signal profile is
s′ = (1−i, 0i) is at most 1/n as well. Therefore, the achieved welfare at signal profile
s′ is at most 1/n+ (n− 1) · ε, while the optimal welfare is 1, giving a factor n gap 6.

Therefore, some assumption is needed if we are to get good approximations to
social welfare. The approach taken by Eden et al. [2018] was to define a relaxed notion
of single-crossing that they called c-single crossing and then provide mechanisms
that approximately maximize social welfare, where the approximation ratio depends
on c and n, the number of agents.

In this chapter, we go in a different direction, starting with the observation
that in Example 5, the valuations treat the signals as highly-complementary–one
has a value bounded away from zero only if all other agent’s signals are high
simultaneously. This suggests that the case where the valuations treat the signals
more like “substitutes” might be easier to handle.

We capture this by focusing on submodular over signals (SOS) valuations. This
means that for every i and j, when signals s−j are lower, the sensitivity of the
valuation vi(s) to changes in sj is higher. Formally, we assume that for all j, for any
sj , δ ≥ 0, and for any s−j and s′−j such that component-wise s−j ≤ s′−j , it holds that

vi(sj + δ, s−j)− vi(sj, s−j) ≥ vi(sj + δ, s′−j)− vi(sj, s′−j).
6Eden et al. [2018] show that there exists a prior for which the n gap still holds, even if the

mechanism knows the prior.
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Many valuations considered in the literature on interdependent valuations are
SOS (though this term is not used) Milgrom and Weber [1982]; Dasgupta and Maskin
[2000]; Klemperer [1998]. The simplest (yet still rich) class of SOS valuations are
fully separable valuation functions 7, where there are arbitrary (weakly increasing)
functions gij(sj) for each pair of bidders i and j such that

vi(s) =
n∑
j=1

gij(sj).

A more general class of SOS valuation functions are functions of the form vi(s) =

f(
∑n

j=1 gij(sj)), where f is a weakly increasing concave function.
We can now state the main question we study in this chapter: to what extent can

social welfare be approximated in interdependent settings with SOS valuations? Unfortu-
nately, Example 4 itself describes SOS valuations, so no deterministic auction can
achieve any bounded approximation ratio, even for this subclass of valuations. Thus,
we must turn to randomized auctions.

6.1.3 Our Results and Techniques

All of our positive results concern the design of randomized, prior-free, universally
ex-post incentive-compatible (IC), individually rational (IR) mechanisms. Prior-free means
that the rules of the mechanism makes no use of the prior distribution over the
signals, thus need not have any knowledge of the prior.

Our first result provides approximation guarantees for single-parameter downward-
closed settings. An important special case of this result is single-item auctions, which
was the focus of Eden et al. [2018].

Theorem 26 (See Section 6.4): For every single-parameter downward-closed setting,
if the valuation functions are SOS, then the Random Sampling Vickrey auction is a
universally ex-post IC-IR mechanism that gives a 4-approximation to the optimal
social welfare.

Interestingly, no deterministic mechanism can give better than an (n−1)-approximation
for arbitrary downward-closed settings, even if the valuations are single crossing,

7This type of valuation function is ubiquitous in the economics literature on inderdependent
settings; often with the function simply assumed to be a linear function of the signals (see, e.g., Jehiel
and Moldovanu [2001]; Klemperer [1998]).



162

and this is tight. Recall that for a single item auction, or even multiple identical
items, with single crossing valuations, the deterministic generalized Vickrey auction
obtains the optimal welfare Maskin [1992]; Ausubel et al. [1999].

We then turn to multi-dimensional settings. In the most general combinatorial
auction model that we consider, each agent i has a signal siT for each subset T of
items, and a valuation function viT := viT (s1T , s2T , . . . , snT ). For this setting, it is not
at all clear under what conditions it might be possible to maximize social welfare in
ex-post equilibrium.8

However, rather surprisingly (see the related work section below), for the case of
separable SOS valuations9, we are able to extend the 4-approximation guarantee to
combinatorial auctions.

Theorem 28 (See Section 6.5): For every combinatorial auction, if the valuation
functions are separable-SOS, then the Random Sampling VCG auction is a universally
ex-post IC-IR mechanism that gives a 4-approximation to the optimal social welfare.

Finally, we consider combinatorial auctions where each agent i has a single-
dimensional signal si, but where the valuation function viT for each subset of items
T is an arbitrary SOS valuation function viT (s1, . . . , sn). For this case, we show the
following:

Theorems 30 and 31 (See Sections 6.6.1 and 6.6.2): Consider combinatorial auctions
with single-dimensional signals, where each signal takes one of k possible values.
If the valuation functions are SOS, then there exists a universally ex-post IC-IR
mechanism that gives a (k + 3)-approximation to the optimal social welfare. If the
valuations are strong-SOS 10, the approximation ratio improves to O(log k).

All of the above results, as well as our lower bounds, are summarized in Table 6.1.
In addition, all of the results in this chapter generalize easily, with a correspond-
ing degradation in the approximation ratio, to the weaker requirement of d-SOS

8See the related work and also Lemmas 22 and 23, which show that under one natural general-
ization of single-crossing to the setting of two items and two agents that are unit demand, single
crossing is not sufficient for full efficiency.

9A valuation is separable-SOS if the valuation for an agent can be split into two parts, an SOS
function of all other signals and an arbitrary function of the agents’ own signal. Such valuations
generalize the fully separable case discussed above. See definition 30

10See definition 28.
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valuations 11.

6.1.3.1 Intuition for results

The fundamental tension in settings with interdependent valuations that is not
present in the private values setting is the following. Consider, for example, a single
item auction setting where agent 1’s truthful report of her signal increases agent 2’s
value. Since, this increases the chance that agent 2 wins and may decrease agent 1’s
chance of winning, it might motivate agent 1 to strategize and misreport.

Our approach is to simply prevent this interaction. Without looking at the signals,
our mechanism randomly divides the agents into two sets12: potential winners and
certain losers. Losers never receive any allocation. When estimating the value of a
potentially winning agent i, we use only the signals of losers and i’s own signal(s).
Thus, potential winners can not impact the estimated values and hence allocations
of other potential winners. This resolves the truthfulness issue. The remaining
question is: can we get sufficiently accurate estimates of the agents’ values when we
ignore so many signals?

The key lemma (Lemma 18 Section 6.3) shows that we can do so, when the
valuations are SOS. Specifically, for any agent i, if all agents other than i are split
into two random sets A (losers) and B (potential winners), and the signals of agents
in the random subset B are “zeroed out”, then the expected value agent i has for
the item is at least half of her true valuation. That is,

EA[vi(si, sA,0B)] ≥ 1

2
vi(s).

Dealing with combinatorial settings is more involved as the truthfullness charac-
terization is less obvious, but the key ideas of random partitioning and using the
signals of certain losers remain at the core of our results.

6.1.3.2 Additional remarks

While this chapter deals entirely with welfare maximization, our results have sig-
nificance for the objective of maximizing the seller’s revenue. Eden et al. [2018]

11A valuation function is d-SOS if for all j, for all δ > 0, and for any s−j and s′−j such that
component-wise s−j ≤ s′−j , it holds that d·(vi(sj + δ, s−j)− vi(sj , s−j)) ≥ vi(sj+δ, s′−j)−vi(sj , s′−j).

12as in [Goldberg, Hartline, and Wright, 2001].
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Setting Approximation Guarantees
Single Parameter SOS valuations
Downward Closed Feasibility
Single-Dimensional Signals

≥ 1/4
∀mech. ≤ 1/2 (Section 6.4)

Arbitrary Combinatorial SOS valuations
Single-Dimensional Signals, k-sized Signal Space

≥ 1/(k + 3)
∀mech. ≤ 1/2 (Section 6.6.1)

Arbitrary Combinatorial, Strong-SOS Valuations
Single-Dimensional Signals, k-sized Signal Space

≥ 1/(log(k) + 2)
∀mech. ≤ 1/2 (Section 6.6.2)

Combinatorial, Separable-SOS Valuations
Multi-Dimensional Signals

≥ 1/4
∀mech. ≤ 1/2 (Section 6.5)

Table 6.1: The table shows the approximation factors achievable for social welfare
maximization with SOS and strong-SOS valuations. Similar results hold for d-
approximate SOS/Strong-SOS valuations, while losing a factor that depends on
d. All positive results are obtained with universally ex-post IC-IR randomized
mechanisms.

give a reduction from revenue maximization to welfare maximization in single-item
auctions with SOS valuations. Thus, the constant factor approximation mechanism
presented in this chapter implies a constant factor approximation to the optimal
revenue in single-item auctions with SOS valuations. We note that this is the first
revenue approximation result that does not assume any single-crossing type as-
sumption ([Chawla et al., 2014; Eden et al., 2018; Roughgarden and Talgam-Cohen,
2016; Li, 2016] require single crossing or approximate single crossing).

Finally, one can easily verify that, based on Yao’s min-max theorem, the existence
of a randomized prior-free mechanism that gives some approximation guarantee (in
expectation over the coin flips of the mechanism) implies the existence of a determin-
istic prior-dependent mechanisms that gives the same approximation guarantee (in
expectation over the signal profiles).

6.1.4 Extended Related Work

As discussed above, in single-parameter settings, there is an extensive literature on
mechanism design with interdependent valuations that considers social welfare
maximization, revenue maximization and other objectives. However, the vast ma-
jority of this literature assumes some kind of single-crossing condition and, in the
context of social welfare, focuses on exact optimization.

There are two papers that we are aware of that study the question of how well
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optimal social welfare can be approximated in ex-post equilibrium without single-
crossing. The first is the aforementioned paper [Eden et al., 2018] on single item
auctions with interdependent valuations. They defined a parameterized version of
single-crossing, termed c-single crossing, where c > 1 is a parameter that indicates
how close is the valuation profile to satisfy single-crossing. For c-single crossing
valuations, they provide a number of results including a lower bound of c on the
approximation ratio achievable by any mechanism, a matching upper bound for
binary signal spaces, and mechanisms that achieve approximation ratios of (n− 1)c

and 2c3/2
√
n (the first is deterministic and the second is randomized).

Ito and Parkes [2006] also consider approximating social welfare in the interde-
pendent setting. Specifically, they propose a greedy contingent-bid auction (à la
[Dasgupta and Maskin, 2000]) and show that it achieves a

√
m approximation to

the optimal social welfare for m goods, in the special case of combinatorial auctions
with single-minded bidders.

For multi-dimensional signals and settings, the landscape is sparser (and bleaker)
and, to our knowledge, focuses on exact social welfare maximization. Maskin [1992]
has observed that, in general, no efficient incentive-compatible single item auction
exists if a buyer’s valuation depends on a multi-dimensional signal.

Dasgupta and Maskin [2000] extend the VCG mechanism to the Generalized VCG
(G-VCG) mechanism to maximize social welfare in interdependent value settings as
well. When buyer signals are single-dimensional for a single-item, then G-VCG at-
tains optimal social welfare. However, when buyers may have multiple signals (even
when competing for a single item), they prove that in some cases, optimal efficiency
may no longer be attainable. Instead, they consider the second-best benchmark of
maximum social welfare subject to Bayesian incentive-compatibility constraints (also
known as “constrained efficiency”), and prove that G-VCG attains this second-best
welfare. They extend this result to multiple goods as well, so long as the valuations
satisfy a separability condition, described below, that essentially compresses the
signals to a single-dimensional statistic.

The authors assume a number of assumptions on the valuation functions, the
buyers’ signals, and the information that is known about them. They assume that the
valuation functions vi(·) are continuously differentiable, strictly monotone increasing
in si, and that they satisfy a weak version of the single-crossing assumption. That is,
buyer i and j are tied for the highest values at some signal profile ~s, then vi(·) must
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be more sensitive to i’s signal at ~s than vj(·). Formally,

∂

∂si
vi(si, ~s−i) >

∂

∂si
vj(si, ~s−i).

The intuition for why efficiency is not always attainable with multi-dimensional
signals is as follows. Suppose that bidder i has a valuation function such that
multiple profiles of his own signals reduce to the same compressed signal t and
give him the same utility. However, for other bidders, different profiles give them
different utility. It is impossible to incentivize bidder i to report the profile that
maximizes welfare for other bidders since both achieve the same utility for him.

In the multi-dimensional signal setting, the authors add the assumption that the
valuation functions are separable, meaning that each buyer’s signals~si are compressed
by every valuation function vj(·) to some one-dimensional statistic tji before the
statistics from the various buyers interact with one other. Under this very strong
assumption, they also generalize monotonicity (that if buyer iprefers some allocation,
his preference only increases in tii) and weak single-crossing (if i prefers some
allocation that tied as welfare-maximizing with some other allocation, then the
welfare of his preferred allocation increases at least as fast in tii as the other allocation).

As a direct revelation mechanism, the G-VCG mechanism would operate as
follows. Bidders would report their signals directly to the auctioneer, who, knowing
the valuation functions, would compute the bidders’ valuation functions on all of
the reported signals. Assuming the reported signals are truthful, she then has the
ability to determine exactly what allocation is efficient.

However, Dasgupta and Maskin prefer not to use direct revelation mechanisms,
citing them as too costly since they require the designer to know the valuation
functions and signal spaces. Instead, they focus on Bayes-Nash equilibria, where
buyers bid values rather than signals, and they develop bidding strategies in response
to the reported values of other buyers. Note that a buyer must bid his value without
knowing his own value, so the best he can do is apply a strategy to his signal,
valuation function, and the conditional information he has about the distributions
of others’ signals based on their reported bids. Of course, this heavily relies on full
knowledge of the prior distributions of buyers’ signals. The technical approach is to
look for a fixed point in the bidding strategy. At first, the authors seem to assume
that buyers know the valuation functions and signal spaces well enough to reverse
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engineer a bidder’s signal from observing their reported value. However, they point
out that they need only know a fixed point in the bidding strategy. What is unclear
is that the buyers would actually be able to converge upon this equilibrium.

Jehiel and Moldovanu [2001] study efficient Bayesian incentive compatible (BIC)
auctions in two kinds of settings: those with multi-dimensional signals and those
with one-dimensional signals. They prove impossibility results in the majority
of cases for multi-dimensional signals, and characterize exactly when there exist
auctions that are both efficient and BIC.

Specifically, in their model, there are k possible allocation outcomes. Each buyer
i has a valuation function for each outcome k that depends on signals of buyers
j = 1, . . . , n that are specific to this outcome k and to i, that is, V i

k (s1
ki, . . . , s

n
ki).

The valuation functions are linear, e.g. V i
k (s1

ki, . . . , s
n
ki) =

∑n
j=1 a

j
kis

j
ki where the

coefficients of the signals ajki are non-negative and common knowledge to all. Thus,
their valuation functions are, in one sense, a special case of our separable valuation
functions. On the other hand, they are more general in that all quantities depend
on the outcome k. Thus, there are allocation externalities.

First, they study the environment where a bidder might have multiple signals
for the same outcome, and prove that there are instances for which there are no
efficient BIC auctions. The reason for this is similar to that from the negative result
in [Dasgupta and Maskin, 2000]: the single payment does not provide sufficient
incentives to extract multiple signals from the agent.

The second impossibility result pertains to the case in which an agent i only has
one signal per outcome k, e.g. sikj = sikj′ for all bidders j, j′ (but i has a signal for every
outcome k, and thus still has multi-dimensional signals). This impossibility holds
even though there is only one signal to extract per outcome, unlike the previous
environment. Instances exist where in order to select the efficient alternative, the
mechanism should cause a bidder to be indifferent between two alternatives at many
signal profiles using payments. However, this is only possible in a BIC manner if
the valuation functions happen to take on a very basic form, and if they do not, then
this task becomes impossible.

The authors further characterize the conditions that a mechanism must take on in
order to be BIC, and show that in the case where buyers have only one-dimensional
signals, this simplifies to a monotonicity-like condition that does not depend on the
prior distributions of the signals.
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Jehiel, Meyer-ter Vehn, Moldovanu, and Zame [2006] go on to show that the
only deterministic social choice functions that are ex-post implementable in generic
mechanism design frameworks with multi-dimensional signals, interdependent
valuations and transferable utilities, are constant functions.

Finally, Bikhchandani [2006] considers a single item setting with multi-dimensional
signals but no allocation externalities and shows that there is a generalization of
single-crossing that allows some social choice rules to be implemented ex-post.

Some work in the algorithmic mechanism design community has also focused on
(approximate) revenue maximization in interdependent value settings with single-
dimensional signals. Roughgarden and Talgam-Cohen [2016] assumes that the prior
distributions are affiliated, a form of positive correlation, and solve for an optimal
Myersonian-like theory under this condition. Chawla et al. [2014] choose a random
set of potential winners, use the G-VCG allocation, and then apply lazy conditional
reserves as in the Lookahead auction to construct a mechanism that gives a constant-
factor approximation to revenue for any distributions. However, they assume a
concavity assumption on the valuation functions. Both papers, like almost all prior
work, assume the single-crossing condition on the valuation functions.

For further analysis and discussion of implementation with interdependent
valuations, see e.g., Bergemann and Morris [2005] and McLean and Postlewaite
[2015].

For further literature in computer science on interdependent and correlated
values, see [Ronen, 2001; Constantin, Ito, and Parkes, 2007; Constantin and Parkes,
2007; Klein, Moreno, Parkes, Plakosh, Seuken, and Wallnau, 2008; Papadimitriou
and Pierrakos, 2011; Dobzinski, Fu, and Kleinberg, 2011; Babaioff, Kleinberg, and
Paes Leme, 2012; Abraham, Athey, Babaioff, and Grubb, 2011; Robu, Parkes, Ito,
and Jennings, 2013; Kempe, Syrgkanis, and Tardos, 2013; Che et al., 2015; Li, 2016;
Chawla et al., 2014].

6.2 Model and Definitions

6.2.1 Single Parameter Settings

In Section 6.4, we will consider single-parameter settings with interdependent valu-
ations and downward-closed feasibility constraints. In these settings, a mechanism
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decides which subset of agents 1, . . . , n are to receive “service” (e.g., an item). The
feasibility constraint is defined by a collection I ⊆ 2[n] of subsets of agents that may
feasibly be served simultaneously. We restrict attention to downward-closed settings,
which means that any subset of a feasible set is also feasible. A simple example is a
k-item auction, where I is the collection of all subsets of agents of size at most k.

For these settings, we use the interdependent value model of Milgrom and Weber
[1982]:

Definition 15 (single-dimensional Signals, Single Parameter Valuations). Each agent
j has a private signal sj ∈ R+. The value agent j gives to “receiving service” vj(s) ∈
R+, is a function of all agents’ signals s = (s1, s2, . . . , sn). The function vj(s) is
assumed to be weakly increasing in each coordinate and strictly increasing in si.

6.2.1.1 Deterministic Mechanisms

Definition 16 (Deterministic Single Parameter Mechanisms). A deterministic mech-
anismM = (x, p) in the downward closed setting is a mapping from reported signals
s = (s1, . . . , sn) to allocations x(s) = {xi(s)}1≤i≤n and payments p(s) = {pi(s)}1≤i≤n,
where xi(s) ∈ {0, 1} indicates whether or not agent i receives service and pi(s) is
the payment of agent i. It is required that the set of agents that receive service is
feasible, i.e., {i | xi(s) = 1} ∈ I. (The mechanism designer knows the form of the
valuation functions but learns the private signals only when they are reported.)

Definition 17 (Agent utility). Given a deteministic mechanism (x, p), the utility of
agent i when her true signal is si, she reports s′i and the other agents report s−i is

ui(s
′
i, s−i|si) = xi(s

′
i, s−i)vi(si, s−i)− pi(s′i, s−i).

Agent i will report s′i so as to maximize ui(s′i, s−i|si). We use ui(s) to denote the
utility when she reports truthfully, i.e., ui(si, s−i|si).

Definition 18 (Deterministic ex-post incentive compatibility (IC)). A deterministic
mechanism M = (x, p) in the interdependent setting is ex-post incentive compatible
(IC) if, irrespective of the true signals, and given that all other agents report their
true signals, there is no advantage to an agent to report any signal other that her
true signal. In other words, assuming that s−i are the true signals of other bidders.
ui(s

′
i, s−i|si) is maximized by reporting si truthfully.
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Definition 19 (Deterministic ex-post individual rationality (IR)). A deterministic
mechanism in the interdependent setting is ex-post individually rational (IR) if, irre-
spective of the true signals, and given that all other agents report their true signals,
no agent gets negative utility by participating in the mechanism.

If a deterministic mechanism is both ex-post IR and ex-post IR we say that it is
ex-post IC-IR.

Definition 20. A deterministic allocation rule x is monotone if for every agent i,
every signal profile of all other agents s−i, and every si ≤ s′i, it holds that xi(si, s−i) =

1⇒ xi(s
′
i, s−i) = 1.

Proposition 24. [Roughgarden and Talgam-Cohen, 2016] For every deterministic allocation
rule x for single parameter valuations, there exist payments p such that the mechanism (x, p)

is ex-post IC-IR if and only if xi is monotone for every agent i.

6.2.1.2 Randomized Mechanisms

Definition 21. A randomized mechanism is a probability distribution over deter-
ministic mechanisms.

Definition 22 (Universal ex-post IC-IR). A randomized mechanism is said to be
universally ex-post IC-IR if all deterministic mechanisms in the support are ex-post
IC-IR.

6.2.2 Combinatorial Valuations with Interdependent Signals

Sections 6.5 and 6.6 focus on combinatorial auctions, where there are n agents andm
items. In these settings, a mechanism is used to decide how the items are partitioned
among the agents. We consider two models for the interdependent valuations: 13

Definition 23 (single-dimensional Signals, Combinatorial Valuations). Each agent i
has a signal si ∈ R+. The value agent i gives to subset of items T ⊆ [m], which we
denote by vjT (s), is a function of s = (s1, s2, . . . , sn).

13For other types of signals and interdependent valuation models, see, e.g., Jehiel and Moldovanu
[2001].
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Definition 24 (multi-dimensional Combinatorial Signals, Combinatorial Valuations).
Here, each agent has a signal for each subset of items; for any agent i, we use siT to
denote agent i’s signal for subset of items T ⊆ [m]. The value agent i gives to set T
is denoted by viT (sT ) where sT = (s1T , s2T , . . . , snT ) ∈ R+n. We use s to denote the
set of all signals {sT}T⊆2m .

In both cases, each viT (·) is assumed to be a weakly increasing function of each
signal and strictly increasing in si (or siT respectively), and known to the mechanism
designer.

We give subsequent definitions only for multi-dimensional combinatorial signals,
as single-dimensional signals can be viewed as a special case of multi-dimensional
signals where siT = si for all T .

6.2.2.1 Deterministic Mechanisms

Definition 25 (Deterministic mechanisms for combinatorial settings). A deteministic
mechanismM = (x, p) is a mapping from reported signals s to allocations x = {xiT}
(where each xiT ∈ {0, 1}) and payments p = {piT} for all 1 ≤ i ≤ n and T ⊂
{1, . . . ,m} such that:

• Agent j is allocated the set T iff xjT (s) = 1;

• For each agent j, there is at most one T for which xjT (s) = 1;

• The sets allocated to different agents do not intersect.

• The payment for agent j when her allocation is set T is pjT (s).

Definition 26 (Agent Utility). The utility of agent i when her signals are si =

{siT}T⊂2m , she reports s′i and the other agents report s−i is

ui(s
′
i, s−i|si) =

∑
T⊆2m

xiT (s′i, s−i)[viT (siT , s−iT )− piT (s′i, s−i)].

Given a mechanism M = (x, p), agent i will report s′i so as to maximize ui(s′i, s−i|si).
We use ui(s) to denote the utility when she reports truthfully, i.e., ui(si, s−i|si).

The definitions of ex-post incentive compatibility (IC) and ex-post individually ratio-
nality (IR) for deterministic mechanisms for combinatorial settings are the same as
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the appropriate definitions for single parameter mechanisms (Definitions 18 and 19
with the obvious modifications).

6.2.2.2 Randomized Mechanisms

As with single parameter mechanisms, a randomized mechanism for a combina-
torial setting is a probability distribution over deterministic mechanisms for the
combinatorial setting, and a randomized mechanism is said to be universally ex post
IC-IR if all deterministic mechanisms in the support are themselves ex-post IC-IR.

6.2.3 Submodularity over signals (SOS)

As discussed in the introduction, our results will rely on an assumption about the
valuation functions that we call submodularity over signals or SOS. The SOS (resp.
strong-SOS) notion we use is the same as the weak diminishing returns (resp. strong
diminishing returns) submodularity notion in [Bian, Levy, Krause, and Buhmann,
2017; Niazadeh, Roughgarden, and Wang, 2018]14. SOS was also used in [Eden et al.,
2018], generalizing a similar notion in [Chawla et al., 2014].

Definition 27 (d-approximate submodular-over-signals valuations (d-SOS valua-
tions)). A valuation function v(s) is a d-SOS valuation if for all j, sj , δ ≥ 0,

s−j = (s1, . . . , sj−1, sj+1, . . . , sn) and s′−j = (s′1, . . . , s
′
j−1, s

′
j+1, . . . , s

′
n)

such that s′−j is smaller than or equal to s−j coordinate-wise, it holds that

d ·
(
v(s′−j, sj + δ)− v(s′−j, sj)

)
≥ v(s−j, sj + δ)− v(s−j, sj) (6.1)

If v satisfies this condition with d = 1, we say that v is an SOS valuation function.

Definition 28 (d-approximate strong submodular-over-signals valuations (d-strong-SOS
valuations)). The valuation function v(s) is a d strong-SOS valuation if for any j, δ ≥ 0,

s = (s1, . . . , sn) and s = (s′1, . . . , s
′
n)

14Weak diminishing returns submodularity was introduced in [Soma and Yoshida, 2015], where
it’s termed “diminishing returns submodularity”.
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such that s′ is smaller than or equal to s coordinate-wise, it holds that

d ·
(
v(s′−j, s

′
j + δ)− v(s′−j, s

′
j)
)
≥ v(s−j, sj + δ)− v(s−j, sj) (6.2)

If v satisfies this condition with d = 1, we say that i’s valuation functions are “strong-
SOS”.

Definition 29 (SOS-valuations settings). We say that a mechanism design setting
with interdependent valuations is an SOS-valuations setting or, equivalently, that the
agents have SOS-valuations, in each of the following cases:

• Single parameter valuations (as in definition 15): for every i, the valuation
function vi(s) is SOS.

• Combinatorial valuations with single-parameter signals (as in definition 23):
for every i and T , the valuation function viT (s) is SOS;

• Combinatorial valuations with multi-parameter signals (as in definition 24):
for every i and T , viT (sT ) is SOS, where sT = (s1T , . . . , snT ).

Similar definitions can be given for d-SOS valuation settings and d-strong-SOS
valuation settings.

Finally, in section 6.5, we will specialize to the case of separable SOS valuations.

Definition 30 (Separable SOS valuations). We say that a set of valuations as in
Definition 24 are separable SOS valuations if for every agent i and subset T of items,
viT (sT ) can be written as

viT (sT ) = g−iT (s−iT ) + hiT (siT ),

where g−iT (·) and hiT (·) are both weakly increasing and g−iT (s−iT ) is itself an SOS
valuation function.

Observation 25. A separable SOS valuation function is itself an SOS valuation function.

We can similarly define separable d-SOS valuations.
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6.2.4 A useful fact about SOS valuations

Lemma 17. Let v : R+n → R+ be a d-SOS function. Let A ⊆ [n] and B = [n] \ A. For
any sA,yA ∈ R+|A|, and sB, s

′
B ∈ R+|B| such that sB is smaller than s′B coordinate wise,

d · (v(sA + yA, sB)− v(sA, sB)) ≥ v(sA + yA, s
′
B)− v(sA, s

′
B).

Proof. Let i1, i2, . . . , i|A| be the elements of A. For 1 ≤ j ≤ |A|, let sj and s′j denote
the vectors

sj =
(

(si1 + yi1), . . . , (sij + yij), sij+1
, . . . , si|A| , sB

)
,

s′
j

=
(

(si1 + yi1), . . . , (sij + yij), sij+1
, . . . , si|A| , s

′
B

)
.

Note that s|A| = (sA + yA, sB), and s′|A| = (sA + yA, s
′
B).

It follows from the d-SOS definition that for every 1 ≤ j ≤ |A|,

d ·
(
v(sj)− v(sj−1)

)
≥ v(s′

j
)− v(s′

j−1
), (6.3)

where s0 = (sA, sB) and s′0 = (sA, s
′
B).

Summing Equation (6.3) for j = 1, 2, . . . , |A| proves the claim.

6.3 The Key Lemma

The following is a key lemma which is used for both single parameter and combina-
torial settings.

Lemma 18. Let vi : R+n → R+ be a d-SOS function. Let A be a uniformly random subset
of [n] \ {i}, and let B := ([n] \ {i}) \ A. It now holds that

EA [vi(sA,0B, si)] ≥
1

d+ 1
vi(s),

where the expectation is over the random choice of A.

Proof. We consider two equiprobable events,

• A = S ⊂ [n] \ {i} is chosen as the random subset.
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• A = T = ([n] \ {i}) \ S is chosen as the random subset.

Normalize the valuations so that vi(s) = 1 and define α, β ∈ [0, 1] such that

vi(sS,0T , si) = α, vi(0S, sT , si) = β.

It follows that

β = vi(0S, sT , si) ≥ vi(0S, sT , si)− vi(0S,0T , si)

≥ (vi(sS, sT , si)− vi(sS,0T , si))/d

= (1− α)/d,

where the first inequality follows from non-negativity of vi(0S,0T , si), and the second
inequality follows from vi being d-SOS and Lemma 17.

Similarly, we have that

α ≥ (1− β)/d ⇒ β ≥ 1− αd;

It follows that

α + β ≥ max

(
α +

1− α
d

, α + 1− αd
)
.

Solving for equality of the two terms, we get that α = 1/(d+ 1) which implies that

α + β ≥ 2

d+ 1
.

Partition the event space into pairs (S, T ) that partition [n] \ {i}. For every such
(S, T ) pair, it follows that vi(sS,0T , si) + vi(0S, sT , si) = α + β ≥ 2

d+1
.

We conclude with the following, where the third line follows from the fact that
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there are 2n−1/2 such (S, T ) pairs that partition [n] \ {i}:

EA
[
vi(s

A,0B, si)
]

=
∑

A⊆[n]\{i}

Pr[A] · vi(sA,0B, si)

=
1

2n−1
·
∑

A⊆[n]\{i}

vi(s
A,0B, si)

≥ 1

2n−1
· 2n−1

2
· 2

d+ 1
=

1

d+ 1
,

as desired.

6.4 Single-Parameter Valuations

In this section we describe the Random Sampling Vickrey (RS-V) mechanism that
achieves a 4-approximation for single-parameter downward-closed environments
with SOS valuations and a 2(d+ 1)-approximation for d-SOS valuations. We then
give a lower bound of 2 and

√
d for SOS and d-SOS valuations respectively, even in

the case of selling a single item.
Let I ⊆ 2[n] be a downward-closed set system. We present a mechanism that

serves only sets in I and gets a 2(d+ 1)-approximation to the optimal welfare.

Random Sampling Vickrey (RS-V):

• Elicit bids s̃ from the agents.

• Partition the agents into two sets, A and B, uniformly at random.

• For i ∈ B, let wi = vi(̃sA, s̃i,0B\{i}).

• Allocate to a set of bidders in

argmaxS∈I : S⊆B

{∑
i∈S

wi.

}

Theorem 26. For agents with SOS valuations, and for every downward-closed feasibility
constraint I , RS-V is an ex-post IC-IR mechanism that gives 4-approximation to the optimal
welfare. For d-SOS valuations, the mechanism gives a 2(d+1)-approximation to the optimal
welfare.
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Proof. We first show the allocation is monotone in one’s signal, and hence, by Propo-
sition 24, the mechanism is ex-post IC-IR. Fix a random partition (A,B).

• Agents in A are never allocated anything and thus their allocation is weakly
monotone in their signal.

• For an agent i ∈ B, increasing s̃i can only increase wi, whereas it leaves wj
unchanged for all j ∈ B \ {i}. Thus, this only increases the weight of feasible
sets (subsets of B in I) that i belongs to. Therefore, increasing si can only
cause i to go from being unallocated to being allocated.

For approximation, consider a set S∗ ∈ argmaxS∈I
∑

i∈S vi(s) that maximizes
social welfare. For every i ∈ S∗, from the Key Lemma 18, we have that

EB[wi · 1i∈B] = EB[vi(si, sA,0B−i
) | i ∈ B] · Pr(i ∈ B) ≥ vi(s)

d+ 1
· 1

2
. (6.4)

For every set B, the fact that I is downward-closed implies that S∗ ∩ B ∈ I.
Therefore, S∗ ∩ B is eligible to be selected by RS-V as the allocated set of bidders.
We have that the values of the bidders we allocate to are at least

EB

[
max

S∈I:S⊆B

∑
i∈S

wi

]
≥ EB

[ ∑
i∈S∗∩B

wi

]
= EB

[∑
i∈S∗

wi · 1i∈B

]

=
∑
i∈S∗

EB [wi · 1i∈B] ≥
∑
i∈S∗

vi(s)

2(d+ 1)
,

as desired. Since the allocated bidders’ true values at s are only higher than the
proxy values wi, this continues to hold.

We note that for the case of downward-closed feasibility constraints, even if the
valuations satisfy single-crossing, there can be an n− 1 gap between the optimal
welfare and the welfare that the best deterministic mechanism can get. This is stated
in Theorem 36 in Section C.2.

The following lower bounds, Theorem 27 show that even for a single item setting,
one cannot hope to get a better approximation than 2 and Ω(

√
d) for SOS and
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d-SOS valuations respectively.The lower bounds apply to arbitrary randomized
mechanisms15.

Theorem 27. No ex-post IC-IR mechanism (not necessarily universal) for selling a single
item can get a better approximation than

(a) a factor of 2 for SOS valuations.

(b) a factor of Ω(
√
d) for d-SOS valuations.

Proof. Let xi(s) be the probability agent i is allocated at signal profile s. Notice that
for every s,

∑
i xi(s) ≤ 1, otherwise the allocation rule is not feasible.

(a) Consider the case where there are two agents, 1 and 2, s1 ∈ {0, 1} and agent 2
has no signal. The valuations are v1(0) = 1, v1(1) = 1 + ε, v2(0) = 0 and
v2(1) = H for H � 1� ε. It is easy to see the valuations are SOS.

In order to get better than a 2-approximation at s1 = 0, we must have x1(0) >

1/2. By monotonicity, this forces x1(1) > 1/2 as well, and hence x2(1) <

1/2 by feasibility. This implies that the expected welfare when s1 = 1 is
x1(1)v1(1) + x2(1)v2(1) < H/2 + 1, while the optimal welfare when s1 = 1 is H .
For a large H , this approaches a 2-approximation. Note that this lower bound
applies even given a known prior distribution on the signals in the event that
we have a prior on the signals that satisfies: Pr[s1 = 0] · 1 = Pr[s1 = 1] ·H .

(b) Consider the case where there are n =
√
d agents and si ∈ {0, 1} for every

agent i. The valuation of agent i is

vi(s) =


∑

j 6=i sj + ε · si ∃j 6= i : sj = 0

d+ ε · si sj = 1 ∀j 6= i,

where ε→ 0.

To see that the valuations are d-SOS, notice that whenever a signal sj changes
from 0 to 1, the valuation of agent i 6= j increases by 1 unless all other signals

15A randomized mechanism takes as input the set of signals s and produces as output xi(s) and
pi(s) for each agent i, where xi(s) is the probability that agent i wins and pi(s) is agent i’s expected
payment. Such a mechanism is ex-post IC (but not necessarily universally so) if and only if xi(si, s−i)
is monotonically increasing in si.
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beside i’s are already set to 1, in which case the valuation increases by d−
√
d+

2 < d. Consider valuation profiles si = (0i,1−i). Note that by monotonicity,
for every truthful mechanism, it must be the case that xi(si) ≤ xi(1). Since any
feasible allocation rule must satisfy

∑√d
i=1 xi(1) ≤ 1, then it must be the case

there exists some agent i such that xi(1) ≤ 1√
d
, which by monotonicity implies

that xi(si) ≤ 1√
d
. However, at profile si, vi(si) = d while vj(si) =

√
d− 2 <

√
d

for all j 6= i, so we get that the expected welfare of the mechanism at si is at
most xi(si) · d+ (1− xi(si)) ·

√
d ≤ 2

√
d, while the optimal welfare is d. Again,

the lower bound also applies to the setting with known priors on the signals
using a prior that satisfies: Pr[si] = Pr[sj] = 1√

d
for all i and j.

6.5 Combinatorial Auctions with Separable
Valuations

In this section we present an ex-post IC-IR mechanism that gives 1/4 of the optimal
social welfare in any combinatorial auction setting with separable SOS valuations
(as in Definition 30). The mechanism, that we call the Random-sampling VCG auction
is a natural extension of the Random-Sampling Vickrey (RS-V) auction presented
in Section 6.4. Note that unlike RS-V, here we need to explicitly define payments so
that the obtained mechanism is ex-post IC-IR. We derive VCG-inspired payments
which align the objective of the mechanism with that of the agents. Separability is
used here, as without it, the payment term would have been affected by the agent’s
report (while with separability, only the allocation is affected by it).

Random-Sampling VCG (RS-VCG):

• Agents report their signals s̃.

• Partition the agents into two sets A and B uniformly at random.

• For each agent j ∈ B and bundle T ⊆ [m], let

wjT := vjT (s̃jT , s̃AT ,0B−jT ) = g−jT (s̃AT ,0B−jT ) + hjT (s̃jT ).
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• Let the allocation be

{Ti}i∈B ∈ argmax{Si}i∈B

∑
i∈B

wiSi
;

i.e., {Ti}i∈B is the allocation that maximizes the “welfare” using wiT ’s.

• Set the payment for a winning agent i ∈ B receiving set of goods Ti to be:

pi(s̃) := g−iTi(s̃−iTi)− g−iTi(s̃ATi ,0B−iTi)−
∑

j∈B\{i}

wjTj + w−i,

where
w−i = max

partitions {T ′j}

∑
j∈B\{i}

wjT ′j ,

that is, w−i is the weight of the best allocation without agent i.

Since thewjT ’s do not depend on agent i’s report (since i is inB), w−i doesn’t depend
on agent i’s report. Therefore, we can (and will) ignore this term when considering
incentive compatibility below.

Note also that since the maximal partition guarantees that w−i ≥
∑

j∈B\{i}wjTj ,
and monotonicity of valuations in signals guarantees that g−iTi(s̃−i) ≥ g−iTi(s̃A,0B−i

).
Therefore, the payments pi(s̃) are always nonnegative.

Theorem 28. Random-Sampling VCG is an ex-post IC-IR mechanism that gives a 4-
approximation to the optimal social welfare for any combinatorial auction setting with
separable SOS valuations.

Proof. First we show that if the agents bid truthfully, then the mechanism gives a
4-approximation to social welfare. For every agent i and bundle T ,

EB[wiT · 1i∈B] = EB[viT (siT , sAT ,0B−iT ) | i ∈ B] · Pr(i ∈ B) ≥ viT (sT )

2
· 1

2
, (6.5)

where the inequality follows by applying Lemma 18 with d = 1.
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Let S∗1 , . . . , S∗n be the true welfare maximizing allocation. Then,

EB

[
max

partitions {Ti}

∑
i∈B

wiTi

]
≥ EB

[∑
i

wiS∗i · 1i∈B

]

=
∑
i

EB[wiS∗i · 1i∈B] ≥ 1

4

∑
i

viS∗i (sS∗i ),

where the last inequality follows by substituting S∗i in T in Equation (6.5) for every
i. Since viT (s) is always at least wiT , this proves the approximation ratio.

Next, we show that RS-VCG is universally ex-post IC. Fix a random partition
(A,B). Suppose that when all agents bid truthfully

{T ∗j }j∈B = argmaxpartitions {Tj}

∑
j∈B

wjTj .

Suppose that all agents but i ∈ B bid truthfully and i bids s′i instead of his true
signal vector si. Let {T ′j}j∈B be the resulting allocation. Therefore, agent i’s utility
when reporting s′i (after disregarding the w−i term as mentioned above) is:

viT ′i (s)− pi(s
′
i, s−i) = g−iT ′i (s−iT ′i ) + hiT ′i (siT ′i )− pi(s

′
i, s−i)

= g−iT ′i (s−iT ′i ) + hiT ′i (siT ′i )−

g−iT ′i (s−iT ′i )− g−iT ′i (sAT ′i ,0B−iT ′i
)−

∑
j∈B\{i}

wjT ′j


= hiT ′i (siT ′i ) + g−iT ′i (sAT ′i ,0B−iT ′i

) +
∑

j∈B\{i}

wjT ′j

= wiT ′i +
∑

j∈B\{i}

wjT ′j =
∑
j∈B

wjT ′j

≤
∑
j∈B

wjT ∗j ,

where
∑

j∈B wjT ∗j is i’s utility for bidding truthfully.
Finally, we show that the mechanism is ex-post IR. Indeed, from above, agent i’s

utility when reporting truthfully (and without disregarding the w−i term) is

viT ∗i (sT ∗i )− pi(s) =
∑
j∈B

wjT ∗j − w−i =
∑
j∈B

wjT ∗j − max
partitions {T ′j}

∑
j∈B\{i}

wjT ′j ≥ 0.
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In the case of separable d-SOS valuations, the Random-Sampling VCG is an ex-post
IC-IR mechanism that gives 2(d+ 1)-approximation to the social welfare. The proof
is identical to Theorem 28, except that Equation (6.5) is changed to

EB[wiT · 1i∈B] ≥ viT (sT )

2(d+ 1)
,

since we apply Lemma 18 with an arbitrary d.

Remark 29. Theorem 28 is clearly analogous to the VCG mechanism for combinatorial
auctions with private values. As with VCG for private values, in many cases, there is unlikely
to be a polynomial time algorithm to compute allocations and payments. Exceptions include
settings we know and love such as unit-demand auctions, additive valuations, etc.

6.6 Combinatorial Auctions with Single-Dimensional
Signals

In this section we consider combinatorial valuations (general combinatorial auctions)
with single-dimensional signals (as given by Definition 23).

When the signal space of each agent is of size at most k, we present a mecha-
nism that gets (k + 3)-approximation for SOS valuations (see Section 6.6.1), and a
mechanism that gets (2 log2 k + 4)-approximation for strong-SOS valuations (Def-
inition 28, see Section 6.6.2 for details regarding the mechanism). For d-SOS and
d-strong-SOS valuations, the mechanism generalizes to give O(dk)- and O(d2 log k)-
approximations respectively, as shown in Section C.3.

We first decompose the optimal welfare into two parts, OTHER and SELF. Each
part will be covered by a corresponding mechanism. Let T ∗ = {T ∗i }i∈[n] be a welfare-
maximizing allocation at signal profile s, and let W ∗(s) be the social welfare of T ∗ at
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s. Consider the following decomposition:

W ∗(s) =
∑
i

viT ∗i (s)

=
∑
i

viT ∗i (s−i, 0i) +
∑

i : si>0

(
viT ∗i (s)− viT ∗i (s−i, 0i)

)
≤

∑
i

viT ∗i (s−i, 0i) +
∑

i : si>0

(
viT ∗i (0−i, si)− viT ∗i (0)

)
(6.6)

≤
∑
i

viT ∗i (s−i, 0i)︸ ︷︷ ︸
OTHER

+
k−1∑
`=1

∑
i : si=`

viT ∗i (0−i, si)︸ ︷︷ ︸
SELF

, (6.7)

where Equation (6.6) follows from the definition of submodularity (and therefore,
also follows the definition of strong-submodularity). The last inequality follows
from the non-negativity of viT ∗i (0). The first term in the decomposition represents
the contribution of others’ signals to one’s value from his allocated bundle, while
the second term represents one’s contribution to his own value. Each of these terms
will be targeted using a different mechanism. Whereas the OTHER term will be
targeted using the same mechanism in both the SOS and strong-SOS cases, the SELF

term will be treated differently.

6.6.1 (k + 3)-approximation for SOS valuations

Suppose si ∈ {0, 1, . . . , k − 1} for all i. The mechanism is as follows:

Mechanism k signals High-Low (k-HL):

With probability pRT = k−1
k+3

, run Random Threshold; otherwise, run Random Sampling,
as described below:
Mechanism Random Threshold

• Choose a random threshold ` uniformly in {1, . . . , k − 1}.

• Let N≥` = {i : si ≥ `} be the “high” agents; i.e., agents with signal at least `,
and let N<` = [n] \N≥` be the “low” agents.

• For every high agent i ∈ N≥` and bundle T , let v̄iT := viT (sN<`
, `N≥`

)

• For every low agent i ∈ N<` and bundle T , let v̄iT := 0.
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• Let the allocation be

T̄ ∈ argmaxS={Si}i∈N≥`

∑
i∈N≥`

v̄iSi
.

(i.e., the allocation that maximizes the “welfare” of high agents using values
v̄iT .)

• Agent i that receives bundle T̄i pays viT̄i(s−i, si = `− 1).

Mechanism Random Sampling

• Split the agents into sets A and B uniformly at random.

• For each i ∈ B and bundle T , let ṽiT := vij(sA,0B).

• For each i ∈ A and bundle T , let ṽiT := 0.

• Let the allocation be

T̃ ∈ argmaxS={Si}i∈B

∑
i∈B

ṽiSi
.

(i.e., the allocation that maximizes the “welfare” of agents in B using values
ṽiT .)

• Charge no payments.

The k-HL mechanism is a random combination of two mechanisms: Random

Threshold approximates the welfare contribution of the bidders’ signals to their own
value (the SELF term); Random Sampling approximates the welfare contributions of
the bidders’ signals to other bidders’ values (the OTHER term). We wish to prove
the following theorem.

Theorem 30. For every combinatorial auction setting with SOS valuations, single-dimensional
signals, and signal space of size k, i.e. si ∈ {0, 1, . . . , k − 1} ∀i, mechanism k-HL is an
ex-post IC-IR mechanism that gives (k + 3)-approximation to the optimal social welfare.

We first argue that the mechanism is ex-post IC-IR. Proof of ex-post IC-IR. Random
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Sampling is ex-post IC-IR since the agents that might receive items (agents in B)
cannot change the allocation since their signals are ignored (and they pay nothing).

As for Random Threshold, consider a threshold ` chosen by the mechanism. If
the agent’s signal is below ` and the agent reports ` or above, then his payment,
if allocated bundle T is viT (s−i, si = ` − 1) ≥ viT (s); i.e., the agent’s utility is non-
positive. Bidding a different value below ` will grant the agent no items. If his value
is ` or above, then bidding a different signal above ` will result in the same outcome,
since the sets N≥` and N<` remain the same. If he bids a signal below `, then he
won’t receive any item, and his utility will be 0, while bidding his true signal will
result in non-negative utility. In Lemma 20, we prove that Random Sampling

covers the OTHER component of the social welfare, and in Lemma 19, we show that
Random Threshold covers the SELF component.

Lemma 19. For SOS valuations, the Random Threshold mechanism gives a (k − 1)-
approximation to the SELF component of the optimal social welfare.

Proof. Consider a threshold ` ∈ {1, . . . , k − 1} chosen in Random Threshold. When-
ever ` is chosen, we have that∑

i : si=`

v̄iT ∗i =
∑
i : si=`

viT ∗i (sN<`
, `N≥`

) ≥
∑
i : si=`

viT ∗i (0−i, si).

Since Random Threshold chooses an allocation T̄ = {T̄i}i∈N≥`
that maximizes the

welfare under v̄iT ’s, the value of the allocation is only larger than the left expression
above. Because viT̄i(s) ≥ v̄iT̄i , we get that if ` was chosen, which happens with
probability 1

k−1
, the welfare achieved is at least

∑
i : si=`

viT ∗i (0−i, si). Therefore, the

welfare from running Random Threshold is at least

k−1∑
`=1

1

k − 1

∑
i : si=`

viT ∗i (0−i, si),≥
SELF

k − 1
.

Lemma 20. For SOS valuations, the Random Samplingmechanism gives a 4-approximation
to the OTHER component of the optimal social welfare.
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Proof. Consider a set T . Using an application of the Key Lemma 18 with respect to
viT (s−i, 0i), we see that

EA,B[ṽiT ] ≥ Pr[i ∈ B] · EA,B[ṽiT | i ∈ B] =
1

2
EA,B\i[ṽiT | i ∈ B] ≥ 1

4
viT (s−i, 0i). (6.8)

Therefore, the expected weight of the allocation {T ∗i }i∈[n] using weights ṽiT ’s is

EA,B
[∑

i

ṽiT ∗i

]
=
∑
i

EA,B
[
ṽiT ∗i

]
≥
∑
i

1

4
viT ∗i (s−i, 0i) =

OTHER

4
.

Since the mechanism chooses the optimal allocation according to the ṽiT ’s, its weight
can only be larger. Moreover, since ṽiT = viT (s−i, 0) ≤ viT (s), the welfare achieved
by the mechanism is at least OTHER

4
, as desired.

We conclude by proving the claimed approximation ratio.

Proof of approximation. According to Lemma 19, Random Threshold approximates
SELF to a factor of k−1. According to Lemma 20 that Random Sampling approximates
OTHER to a factor of 4. Therefore, running Random Threshold with probability pRT
and Random Sampling with probability 1− pRT yields a welfare of

pRT
SELF

k − 1
+ (1− pRT )

OTHER

4
=

k − 1

k + 3
· SELF
k − 1

+
4

k + 3
· OTHER

4

=
SELF + OTHER

k + 3
≥ W ∗(s)

k + 3
,

where the inequality follows Equation (6.7).

6.6.2 O(log k)-Approximation with Strong-SOS Valuations

Strong-SOS valuations means the effect on the valuation is concave in one’s own
signal. This allows us to use a bucketing technique in order to give an O(log k)-
approximation to the SELF component in the decomposition depicted by Equa-
tion (6.7).
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Consider the SELF term in Equation (6.7). We can bound this term as follows:

SELF =
k−1∑
`=1

∑
i : si=`

viT ∗i (0−i, si)

=

log2 k∑
`=1

∑
i : 2`−1≤si<2`

viT ∗i (0−i, si)

≤
log2 k∑
`=1

∑
i : 2`−1≤si<2`

viT ∗i (0−i, 2
`−1

i), (6.9)

where the inequality follows the definition of strong-SOS valuations.
We introduce mechanism Random Bucket to give an O(log k)-approximation to

the upper bound in Equation (6.9).

Mechanism Random Bucket:

• choose ` uniformly in {1, . . . , log2 k}.

• Let NB`
= {i : such that si ≥ 2`−1} be the agents with signal at least 2`−1 and

N¬B`
= [n] \NB`

.

• For i ∈ NB`
and bundle T , let v̄iT := viT (sN¬B`

,2`−1NB`
) (and v̄iT := 0 for

i ∈ N¬B`
).

• Let the allocation be

T̄ ∈ argmaxS={Si}i∈NB`

∑
i∈NB`

v̄iSi
.

(i.e., the allocation that maximizes the “welfare” of high agents using values
v̄iT .)

• Agent i that receives bundle T̄i pays viT̄i(s−i, si = 2`−1 − 1).

We show the following approximation guarantee regarding Random Bucket.

Lemma 21. For strong-SOS valuations, the Random Bucket mechanism is ex-post IC-IR
and gives a 2 log2 k approximation to the SELF component of the optimal social welfare.
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Proof. The proof of ex-post IC-IR is identical to that of mechanism Random Threshold,
as both are threshold-based mechanisms. The proof of the approximation guarantee
is also very similar to that of Random Threshold.

Consider a threshold 2`−1 for ` ∈ {1, . . . , k− 1} chosen in Random Bucket. When-
ever ` is chosen, we have that∑
i : 2`−1≤si<2`

v̄iT ∗i =
∑

i : 2`−1≤si<2`

viT ∗i (sN¬B`
,2`−1NB`

) ≥
∑

i : 2`−1≤si<2`

viT ∗i (0−i, 2
`−1

i).

Since Random Bucket chooses an allocation that maximizes the v̄iT ’s, the value of the
allocation is only larger. Because viT̄i(s) ≥ v̄iT̄i , we get that if `was chosen, which hap-
pens with probability 1

log2 k
, the welfare achieved is at least

∑
i : 2`−1≤si<2`

viT ∗i (0−i, si).

Therefore, the welfare from running Random Bucket is at least

log2 k∑
`=1

1

log2 k

∑
i : 2`−1≤si<2`

viT ∗i (0−i, si),≥
SELF

2 log2 k
.

Mechanism k-signals Strong-SOS (k-SS) runs Random Bucketwith probability
pRB = log2k

log2k+2
and mechanism Random Sampling with probability 1− pRB.

Theorem 31. For every combinatorial auction with single-dimensional signals with strong-
SOS valuations and signal space of size k, i.e. si ∈ {0, 1, . . . , k − 1} ∀i, mechanism k-SS

is ex-post IC-IR, and gives (2 log2 k + 4)-approximation to the optimal social welfare.

Proof. We already established that both Random Bucket and Random Sampling are ex-
post IC-IR, hence k-SS is ex-post IC-IR as well. As for the approximation, according
to Lemma 21, with probability pRB we get 2 log2 k-approximation to SELF, and
according to Lemma 20, with probability 1 − pRB we get a 4-approximation to
OTHER. Overall, the expected welfare is at least

pRB
SELF

2 log2 k
+ (1− pRB)

OTHER

4
=

SELF + OTHER

2 log2 k + 4

≥ W ∗

2 log2 k + 4
,

as desired.
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6.7 Open Problems

Our analysis and results suggest many open problems:

• For combinatorial auctions with multi-dimensional signals: is separability a
necessary condition for achieving constant approximation to welfare? This
problem is open even for single-dimensional signals, and even for “simple”
combinatorial valuations, such as unit-demand.

• For single-parameter SOS valuations, downward closed feasibility, and single-
dimensional signals, closing the gap between 1/4 and 1/2 is open.

• The exact same gap applies for combinatorial, separable-SOS valuations with
multi-dimensional signals.

• How does the distinction between SOS and strong-SOS affect the problems
above, if at all?

• When considering the relaxation of SOS valuations to d-SOS valuations, there is
a gap between the positive and negative results with respect to the dependence
on d.

More generally, what other classes of valuations give rise to approximately efficient
mechanisms in settings with interdependent valuations?
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A Missing Details from: The FedEx
Problem
A.1 Proof of strong duality

Theorem 32. Let ai(·), bi(·), λi(·), αi(·) be functions feasible for the primal and dual,
satisfying all the conditions from Section sec:CS. Then they are optimal.

Proof. First, we prove weak duality. For any feasible primal and dual:

∫ H

0

m∑
i=1

bi(v) dv (A.1)

=

∫ H

0

m∑
i=1

(1 · bi(v) + 0 · [λi(v) + αi(v)]) dv. (A.2)

Applying primal feasibility, we see that this quantity is

≥
∫ H

0

m∑
i=1

(
ai(v)bi(v))− a′i(v)λi(v) +

[∫ v

0

ai(x)− ai+1(x)dx

]
αi(v)

)
dv. (A.3)

We rewrite this expression using the following.

• Applying integration by parts,using the facts that λi(·) is continuous (Condi-
tion (3.11)) and equal to 0 at any point that a′i(v) =∞,1 we get

−
∫ H

0

a′i(v)λi(v) dv = −ai(v)λi(v)
∣∣∣H
0

+

∫ H

0

ai(v)λ′i(v) dv =

∫ H

0

ai(v)λ′i(v) dv,

since ai(0) = 0 and λi(H) = 0.

• Second, interchanging the order of integration, we get∫ H

0

∫ v

0

[ai(x)− ai+1(x)dx]αi(v) dv =

∫ H

0

(
ai(v)

∫ H

v

αi(x) dx− ai+1(v)

∫ H

v

αi(x) dx

)
dv.

1a′i(v) can be∞ at only countably many points.
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Combining these shows that (A.3) equals

∫ H

0

(
m∑
i=1

ai(v)

[
bi(v) + λ′i(v) +

∫ H

v

αi(x)−
∫ H

v

αi−1(x) dx

])
dv

≥
∫ H

0

H∑
i=1

ai(v)γi(v) dv (A.4)

where the last inequality is dual feasibility. (Note that α0(·) = αm(·) = 0.)
Comparing (A.1) and (A.4) yields weak duality, i.e.,

∑
i

∫ H
0
bi(v) dv ≥

∑
i

∫ H
0
ai(v)γi(v) dv.

If the conditions (3.11)-(3.17) hold, we also have strong duality and hence opti-
mality: To show that (A.2) = (A.3), observe that

• (4.2) ai(v) < 1 implies that bi(v) = 0;

• (4.3) a′i(v) > 0 implies that λi(v) = 0.

• (4.4)
∫ v

0
(ai+1(x)− ai(x))dx > 0 implies that αi(v) = 0 for i = 1, . . . , n− 1.

Finally, (A.4) is an equality rather than an inequality because of conditions (4.5)-
(3.17).
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B Missing Details from: Proportional
Complementarities
B.1 Improved Additive Bound

We now give a proof which improves the 6-approximation by Babaioff et al. [2014]
to 5.382.

Theorem 33. For any a > 0,

Opt ≤
(

2 +
2

a2

)
· brev + (a+ 1) · srev.

In particular, if we choose a = 3
√

4, then

Opt ≤
(

3 +
3

2
3
√

4

)
·max{srev, brev} ≤ 5.382 ·max{srev, brev}.

Proof of Theorem 33. We improve the analysis used in Cai et al. [2016], where they
obtain an upper bound on Opt using duality. They further partition the upper
bound into three parts:

Opt ≤ single + tail + core.

The first term Single is upper bounded by srev. The second term tail is also upper
bounded by srev, but the first thing we show is that it can also be upper bounded
by brev.

Let item j’s value tj be drawn fromFj independently, and fj(vj) be the probability
that tj = vj . Following the notation of Cai et al. [2016], we use R to denote srev, and
tail is defined as follows.

tail =
∑
j∈[m]

∑
tj>R

fj(tj) · tj · Prt−j∼F−j
[∃` 6= j, t` ≥ tj].

This quantity is the expected value above r from all but the highest item. Note
that for any j and any tj , selling the grand bundle at a price of tj earns revenue at
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least tj · Prt−j∼F−j
[∃` 6= j, t` ≥ tj]. Hence,

tail ≤ brev ·

∑
j∈[m]

∑
tj>R

fj(tj)

 ≤ brev.

The second inequality is because Rj is the optimal revenue for selling only item j,
and Rj ≥ R · Pr[tj ≥ R], thus

∑
tj>R

fj(tj) ≤ Rj/R; also, R =
∑

j Rj .
Next, we improve the analysis of the term core. In Cai et al. [2016], core is upper

bounded by 2brev +2srev. They make use of Chebyshev’s inequality to obtain this
bound. We improve their analysis using a tighter inequality due to Cantelli.

The core is defined as follows.

core =
∑
j∈[m]

∑
tj≤R

fj(tj) · tj = Et∼F

∑
j∈[m]

tj · 1[tj ≤ R]


It is shown in Cai et al. [2016] that Vart∼F

[∑
j∈[m] tj · 1[tj ≤ R]

]
≤ 2R2. Now we

state Cantelli’s inequality:

Theorem 34 (Cantelli’s Inequality). For any real valued random variable X and any
positive number τ ,

Pr [X ≥ E[X]− τ ] ≥ τ 2

τ 2 + Var[X]
.

We define the random variable V =
∑

j∈[m] tj · 1[tj ≤ R] and apply Cantelli’s
inequality to V with τ = aR.

Pr[V ≥ core− aR] ≥ a2R2

Var[V ] + a2R2
≥ a2

2 + a2
.

The last inequality is because Var[V ] ≤ 2R2. Therefore, brev ≥ (core− aR) · a2

2+a2
,

which implies core ≤ (1 + 2
a2

) · brev + a · srev. Combining our new analysis for the
tail and the core, we obtain the new bound.
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C Missing Details from:
Combinatorial Auctions with
Interdependent Valuations
C.1 Unit-Demand Valuations with Single-Crossing

Whereas single-crossing is a strong enough condition to implement the fully efficient
mechanism in a variety of single-parameter environment, generalizations of this
condition fail even in the simplest multi-parameter environments. We consider the
case where bidders are unit demand and each bidder has a scalar as a signal. We
define single-crossing for this setting as follows.

Definition 31 (Single-crossing for unit-demand valuations). A valuation profile v

is said to be single crossing if for every agent i, signals s−i, item j and agent `,

∂

∂si
vij(s−i, si) ≥

∂

∂si
v`j(s−i, si). (C.1)

In this section, we show that in the case two non-identical items are for sale,
and the valuations are unit demand and satisfy single-crossing as defined in Equa-
tion (C.1), any truthful mechanism is bounded away from achieving full efficiency.

In order to give the lower bound, we first give a characterization of ex-post IC
and IR mechanisms in multi-dimensional environments in interdependent values
settings (Section C.1.1). We then turn to prove the lower bound (Section C.1.2).

C.1.1 Cycle Monotonicity

In the IPV model, Rochet [1987] introduced cycle monotonicity as a necessary and
sufficient condition on the allocation to be implementable in dominant strategies
(DSIC) for multidimensional environments. It was noticed that a straightforward
analogue holds for the IDV value model, for ex-post implementability (EPIC) (in
Vohra [2007], this fact is stated without a proof).

Fix a feasible allocation rule x = {xi}i∈[n], where xiT (s) is the probability agent
i receives a bundle T under bid profile s. For each agent i, consider the graph Gx

i
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where there is a vertex for each signal profile s, and there is a directed edge from s

to t if s−i = t−i. The weight of edge (s, t) is

w(s, t) = ET∼xi(s)[viT (s)]− ET∼xi(t)[viT (s)] =
∑
T⊆[m]

xiT (s)viT (s)−
∑
T⊆[m]

xiT (t)viT (s).

The following theorem states that a necessary and sufficient condition for ex-
post implementability of x is that for every agent i, every directed cycle in Gx

i is
non-negative. The proof is a straightforward adjustment of the original proof in
Rochet [1987], and is given below for completeness.

Theorem 35. The allocation rule x is implementable by an ex-post IC mechanism if and
only if for every agent i, all directed cycles in Gx

i have non-negative weight.

Proof. We first show that if the allocation rule is implementable, then there are no
negative cycles. Fix some payment rule p = {pi}i∈[n], where pi(s) is the payment of
agent i under bid profile s. Let s−i be the real signals of all bidders except i, and
consider a cycle s1 → s2 → . . .→ s` → s1 in Gx

i , where st = (s−i, si = ζt) for t ∈ [`].
Since (x,p) is an ex-post IC mechanism, for every true signal si = s, agent i is at
least as well off bidding s than any other bid s′. We get that

ET∼xi(s1)[viT (s1)]− pi(s1) ≥ ET∼xi(s2)[viT (s1)]− pi(s2)

...

ET∼xi(s`−1)[viT (s`−1)]− pi(s`−1) ≥ ET∼xi(s`)[viT (s`−1)]− pi(s`)

ET∼xi(s`)[viT (s`)]− pi(s`) ≥ ET∼xi(s1)[viT (s`)]− pi(s1)

Summing over the above inequalities and using the convention that `+ 1 = 1,
we get that

∑̀
j=1

ET∼xi(sj)[viT (sj)]−
∑̀
j=1

pi(s
j) ≥

∑̀
j=1

ET∼xi(sj+1)[viT (sj)]−
∑̀
j=1

pi(s
j)

⇐⇒
∑̀
j=1

(
ET∼xi(sj)[viT (sj)]− ET∼xi(sj+1)[viT (sj)]

)
≥ 0,

where the LHS of the last inequality is exactly the weight of the cycle.
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We now show how to compute payments that implement a given allocation rule
x that induces no negative cycles for any i and Gx

i . Given Gx
i , one can compute

payments as follows.

• Add a dummy node d with edges of weight 0 to all nodes in Gx
i .

• For every node s of Gx
i , let δ(s) be the distance of the shortest path from d to s.

• Set pi(s) = −δ(s).

Fix signals of the other players s−i. Let s be player i’s true signal and s′ be some
other possible signal for i. Denote s = (s−i, s) and s′ = (s−i, s

′). Consider the nodes
s and s′ in Gx

i . Since δ(s′) is the length of the shortest path from d, it must be that

δ(s′) ≤ δ(s) + w(s, s′),

wherew(s, s′) is the weight of the edge from s to s′. Substitutingw(s, s′) = ET∼xi(s)[viT (s)]−
ET∼xi(s′)[viT (s)], pi(s) = −δ(s), and pi(s′) = −δ(s′), we get

ET∼xi(s)[viT (s)]− pi(s) ≥ ET∼xi(s′)[viT (s)]− pi(s′),

as desired.

C.1.2 Lower Bounds for Deterministic and Randomized
Mechanisms

Lemma 22. There exists a setting with two items and two agents with unit-demand and
single crossing valuations, such that no deterministic truthful mechanism achieves more
than 1/2 of the optimal welfare.

Proof. Consider the setting depicted in Figure C.1, with two agents, 1 and 2, and
two items, a and b. s1 ∈ {0, 1} and s2 is fixed. The values at s1 = 0 are

v1a(0) = 1, v1b(0) = 0, v2a(0) = 0, v1b(0) = 1,

and at s1 = 1 are

v1a(1) = 1 +H + ε, v1b(1) = H, v2a(1) = H, v1b(1) = 1,
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Figure C.1: An instance with unit-demand single-crossing valuations where no
deterministic truthful allocation achieves more than a half of the optimal welfare.

for some arbitrarily large H and a sufficiently small ε. One can easily verify that the
valuations satisfy Equation (C.1), and hence single crossing; indeed, when agent 1’s
signal increases, the valuation of agent 1 for each one of the item increases by more
than the change in agent 2’s valuation.

We show that no deterministic truthful mechanism can get better than 2-approximation.
In order to get better than 2-approximation, the mechanism must allocate item a to
agent 1 and item b to bidder 2 at signal s1 = 0. At s1 = 1, allocating item b to agent 1
and item a to agent 2 obtains a welfare of 2H , while any other allocation obtains at
most a welfare of H + 2 + ε. Since H can be arbitrarily large, one must allocate item
b to agent 1 and item a to agent 2 at signal s1 = 1 in order to get an approximation
ratio better than 2. Consider such an allocation rule x, and the graphGx

1 . This graph
has one cycle, with one edge from s1 = 0 to s1 = 1 and one edge from s1 = 1 to
s1 = 0. The weight of this cycle is

(v1a(0)− v1b(0)) + (v1b(1)− v1a(1)) = (1− 0) + (H − (H + 1 + ε)) = −ε < 0.

Based on Theorem 35, this implies that this allocation rule is not implementable

Lemma 23. There exists a setting with two items and two agents with unit-demand and
single crossing valuations, such that no randomized truthful mechanism achieves more than
√

2+2
4

of the optimal welfare.

Proof. Consider the setting depicted in Figure C.2, with two agents, 1 and 2, and
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Figure C.2: An instance with unit-demand single-crossing valuations where no
randomized truthful allocation achieves more than

√
2+2
4

of the optimal welfare.

two items, a and b. s1 ∈ {0, 1} and s2 ∈ {0, 1}. The values are

v1a(0, 0) = 1, v1b(0, 0) = 0, v2a(0, 0) = 0, v1b(0, 0) = 1,

v1a(1, 0) = 1 +
√

2H, v1b(1, 0) = H, v2a(1, 0) = H, v1b(1, 0) = 1,

v1a(0, 1) = 1, v1b(0, 1) = H, v2a(0, 1) = H, v2b(0, 1) = 1 +
√

2H,

v1a(1, 1) = 1 +
√

2H, v1b(1, 1) = H, v2a(1, 1) = H, v2b(1, 1) = 1 +
√

2H,

for an arbitrarily largeH . One can easily verify that the valuations are single crossing.
We claim that the following equalities hold with respect to the allocation rule of the
optimal randomized mechanism:

(a) For every s1, s2, x1a(s1, s2) = x2b(s2, s1) and x2a(s1, s2) = x1b(s2, s1).

(b) For some q ∈ [0, 1], x1a(0, 0) = x2b(0, 0) = q and x1∅(0, 0) = x2∅(0, 0) = 1− q.

(c) For some p ∈ [0, 1], x1a(0, 1) = p and x1b(0, 1) = 1− p.

We next prove the above equalities.

(a) Consider some implementable allocation rule x̄, and consider the allocation
rule x̃ where x̃1a(s1, s2) = x̄2b(s2, s1) and x̃2a(s1, s2) = x̄1b(s2, s1) for every s1, s2.
Note that the valuations are symmetric; i.e., the role of item a (resp. b) for
agent 1 is the same as the role of items b (resp. a) for agent 2. By symmetry, x̄
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is implementable if and only if x̃ is implementable, and both allocation rules
have the same approximation guarantee. Clearly, an allocation rule x that
applies allocation rules x̄ and x̃, with probability 1

2
each, maintains the same

approximation guarantee. Moreover, this allocation rule satisfies the desired
property.

(b) The optimal mechanism gains nothing from assigning any positive probability
for allocating item b to agent 1 under signal profile (0, 0). This is because item
b grants no value to agent 1, and in terms of incentives, it can only incentivize
agent 1 to misreport his signal at signal profile (1, 0). Analogously, the optimal
mechanism gains nothing from assigning any positive probability for allocating
item a to agent 2 under signal profile (0, 0). By (a), x1a(0, 0) = x2b(0, 0) = q for
some q ∈ [0, 1]. To conclude the proof of (b), note that the only other feasible set
for the agents is the empty set (otherwise, agent 1 has some probability to get
item b and agent 2 has some probability to get item a).

(c) Consider Gx
1 and the cycle C = (0, 0) → (1, 0) → (0, 0) in Gx

1 . This is the only
cycle that contains the node (1, 0) in Gx

1 . Assume x1∅(1, 0) > 0. Transferring
z ∈ (0, 1] probability from x1∅(1, 0) to x1a(1, 0) decreases the weight of the edge
(0, 0)→ (1, 0) by z, and increases the weight of the edge (1, 0)→ (0, 0) by z(1 +√

2H) > z. Therefore, its net effect on the weight of C is positive. Transferring
z ∈ (0, 1] probability from x1∅(1, 0) to x1b(1, 0) does not affect the weight of the
edge (0, 0) → (1, 0), and increases the weight of the edge (1, 0) → (0, 0) by
zH . Therefore, its net effect on the weight of C is positive. Since transferring
x1∅(1, 0) to x1a(1, 0) and x1b(1, 0) increases welfare and does not violate cycle
monotonicity, the optimal mechanism clearly assigns no probability to x1∅(1, 0).

Now assume x1{a,b}(1, 0) > 0. By Moving this probability to x1a(1, 0), we get
the same expected welfare at (1, 0), and the weight of the edges in C does not
change. Therefore, we may also assume the mechanism does not assign positive
utility to x1{a,b}(1, 0).

According to Theorem 35, in any truthful mechanism, the weight of the cycle C
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must be non-negative . This translates to the following condition.

(
ET∼x1(0,0)[v1T (0, 0)]− ET∼x1(1,0)[v1T (0, 0)]

)
−
(
ET∼x1(1,0)[v1T (1, 0)]− ET∼x1(0,0)[v1T (1, 0)]

)
= (q − p) +

(
p(1 +

√
2H) + (1− p)H − q(1 +

√
2H)

)
≥ 0

⇒ q ≤ p

(
1− 1√

2

)
+

1√
2
.

In the optimal mechanism, q will be as large as possible in order to maximize the
expected welfare at signal profile (0, 0). Hence, we can assume q = p

(
1− 1√

2

)
+ 1√

2
.

Therefore, the approximation ratio at profile (0, 0) is at most q = p
(

1− 1√
2

)
+ 1√

2
.

At profile (0, 1), if item a is allocated to agent 1 (which happens with probability p),
the welfare of the mechanism is at most 2 +

√
2H , while the welfare of the optimal

allocation is 2H . As H can be arbitrarily large, this approximation ratio tends to
1√
2
. Therefore, the approximation ratio at profile (1, 0) is at most p√

2
+ (1 − p) =

1− p
(

1− 1√
2

)
. The optimal mechanism would balance between the approximation

ratio at (0, 0) and at (1, 0), therefore uses p that solves

p

(
1− 1√

2

)
+

1√
2

= 1− p
(

1− 1√
2

)
.

Solving for p, we get p = 1
2
. This leads to an approximation ratio of at most 2+

√
2

4
, as

promised.

C.2 n− 1 Lower Bound for Deterministic Mechanisms
with Single-Crossing SOS Valuations.

We show that for downward-closed environments, even if valuations satisfy a single-
crossing condition and are SOS, any deterministic mechanism cannot obtain a better
approximation to the optimal welfare than n− 1.

Theorem 36. There exists a downward-closed environment with valuations that satisfy
single-crossing for which no deterministic mechanism more than a n − 1 fraction of the
optimal welfare.

Proof. Consider a set ofn bidders, where I = {1}∪P ({2, . . . , n}), whereP ({2, . . . , n})
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is the power set of the set {2, . . . , n}. Only agent 1 has a signal s1 ∈ {0, 1}, and other
players do not have signals. The valuations are:

v1(0) = 1 v1(1) = 1 +H

vi(0) = 0 vi(1) = H ∀i ∈ {2, . . . , n}

for an arbitrary large value H � 1. Once can easily verify these valuations satisfy
single-crossing and SOS.

Any deterministic mechanism that wants to get any approximation to the social
welfare must allocate to agent 1 when s1 = 0. In addition, if a deterministic mecha-
nism wants to get a better approximation than n− 1 to the optimal social welfare,
agent 1 cannot be allocated when s1 = 1. Otherwise, none of the bidders in {2, . . . n}
can get allocated because the only set in I that contains agent 1 is the singleton set.
Therefore, if agent 1 is allocated at s1 = 1, the achieved welfare is 1 +H , whereas
the optimal welfare is (n − 1) · H (when serving all agents in {2, . . . , n}). For an
arbitrary large H This ratio approaches n− 1.

The proof follows since serving agent 1 at s1 = 0 and not serving agent 1 at s1 = 1

is violates monotonicity.

Remark 37. The n − 1 factor is tight for single-crossing valuations. If [n] ∈ I, then the
mechanism an always allocate all agents. Otherwise, one can always allocate only to the
highest valued agent, which is monotone because of single crossing. Since the largest feasible
set is of size at most n − 1 in this case, allocating to the highest valued agent yields an
approximation ratio of n− 1.

C.3 Results for d-SOS

We now extend the results in Section 6.6 to the case of combinatorial d-SOS and
combinatorial d-strong-SOS valuations with single-dimensional signals. We first
note that if we consider d-SOS valuations, then Equation (6.6) in the decomposition
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becomes

W ∗ ≤
∑
i

viT ∗i (s−i, 0i) +
∑

i : si>0

d ·
(
viT ∗i (0−i, si)− viT ∗i (0)

)
≤

∑
i

viT ∗i (s−i, 0i)︸ ︷︷ ︸
OTHER

+
k−1∑
`=1

∑
i : si=`

d · viT ∗i (0−i, si)︸ ︷︷ ︸
SELF

, (C.2)

We now show the extension of Theorem 30 to d-SOS valuations.

Theorem 38. For every combinatorial auction with d-SOS valuations over single-dimensional
signals, and signal space of size k, i.e., si ∈ {0, 1, . . . , k − 1} ∀i, there exists a truthful
mechanism that gives d(k + 1) + 2-approximation to the optimal social welfare.

Proof. The mechanism is identical to k-HL, but runs (Random Threshold) with prob-
ability pRT = (k−1)d

d(k+1)+2
and (Random Sampling) With probability 1− pRT . The mech-

anism was already proved to be truthful in Section 6.6.1.
Random Threshold now gives a d(k − 1)-approximation to the new SELF term.

The proof is the same as of Lemma 19, but the extra factor of d comes from the fact
the the new SELF term is d times larger.

Random Sampling gives a 2(d + 1)-approximation to the OTHER term. While
this term is the same for d-SOS, the new factor is due to the fact that when applying
Lemma 18 in the proof of Lemma 20, we get that EA,B[ṽiT ] ≥ 1

2(d+1)
viT (s−i, 0i) instead

of the bound we get in Equation (6.8).
The new approximation guarantee follows from the new decomposition, the

new approximation guarantees the various mechanisms get for the terms of the
decomposition, and the updated probability pRT .

We next extend Theorem 31.

Theorem 39. For every combinatorial auction with d-strong-SOS valuations over single-
dimensional signals, and signal space of size k, i.e., si ∈ {0, 1, . . . , k − 1} ∀i, there exists a
truthful mechanism that gives (d(d+ 1) log2 k + 2(d+ 1))-approximation to the optimal
social welfare.

Proof. The mechanism is identical to mechanism k-SS from Section 6.6.2, but runs
Random Bucket with probability pRB = d log2 k

d log2 k+2
and (Random Sampling) With prob-

ability 1− pRB.
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The SELF term from Equation (6.9) is now bounded via the following:

SELF =
k−1∑
`=1

∑
i : si=`

d · viT ∗i (0−i, si)

=

log2 k∑
`=1

∑
i : 2`−1≤si<2`

d · viT ∗i (0−i, si)

≤
log2 k∑
`=1

∑
i : 2`−1≤si<2`

d(d+ 1) · viT ∗i (0−i, 2
`−1

i), (C.3)

where the inequality follows the definition of d-strong-SOS valuations.
The new bound changes the guarantee of Random Bucket to get a d(d+ 1) log2 k-

approximation to the SELF term, where the proof is identical to that of Lemma 21.
As stated in Theorem 38, Random Sampling approximates the OTHER term to a

factor 2(d + 1). The proof of the new bound follows the new decomposition, the
updated probabilities and the new approximation guarantees of the mechanisms
being run.
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